Cylindric Numbering
   HOME
*





Cylindric Numbering
In computability theory a cylindric numbering is a special kind of numbering first introduced by Yuri L. Ershov in 1973. If a numbering \nu is reducible to \mu then there exists a computable function f with \nu = \mu \circ f. Usually f is not injective, but if \mu is a cylindric numbering we can always find an injective f. Definition A numbering \nu is called cylindric if :\nu \equiv_1 c(\nu). That is if it is one-equivalent to its cylindrification A set S is called cylindric if its indicator function :1_S: \mathbb \to \{0,1\} is a cylindric numbering. Examples * Every Gödel numbering is cylindric Properties * Cylindric numberings are idempotent Idempotence (, ) is the property of certain operation (mathematics), operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence ...: \nu \circ \nu = \nu References * Yu. L. Ershov, "Theorie der ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computability Theory
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numbering (computability Theory)
In computability theory a numbering is the assignment of natural numbers to a set of objects such as functions, rational numbers, graphs, or words in some formal language. A numbering can be used to transfer the idea of computability and related concepts, which are originally defined on the natural numbers using computable functions, to these different types of objects. Common examples of numberings include Gödel numberings in first-order logic, the description numbers that arise from universal Turing machines and admissible numberings of the set of partial computable functions. Definition and examples A numbering of a set S is a surjective partial function from \mathbb to ''S'' (Ershov 1999:477). The value of a numbering ''ν'' at a number ''i'' (if defined) is often written ''ν''''i'' instead of the usual \nu(i) \!. Examples of numberings include: * The set of all finite subsets of \mathbb has a numbering \gamma , defined so that \gamma(0) = \emptyset and so that, for eac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yuri L
Yuri may refer to: People and fictional characters Given name *Yuri (Slavic name), the Slavic masculine form of the given name George, including a list of people with the given name Yuri, Yury, etc. *Yuri (Japanese name), also Yūri, feminine Japanese given names, including a list of people and fictional characters *Yu-ri (Korean name), Korean unisex given name, including a list of people and fictional characters Singers *Yuri (Japanese singer), vocalist of the band Move *Yuri (Korean singer), member of Girl Friends *Yuri (Mexican singer) *Kwon Yu-ri, member of Girls' Generation Footballers *Yuri (footballer, born 1982), full name Yuri de Souza Fonseca, Brazilian football forward *Yuri (footballer, born 1984), full name Yuri Adriano Santos, Brazilian footballer *Yuri (footballer, born 1986), full name Yuri Vera Cruz Erbas, Brazilian footballer *Yuri (footballer, born 1989), full name Yuri Naves Roberto, Brazilian football defensive midfielder * Yuri (footballer, born 1990), full ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reducibility (numbering)
In computability theory a numbering is the assignment of natural numbers to a set of objects such as functions, rational numbers, graphs, or words in some formal language. A numbering can be used to transfer the idea of computability and related concepts, which are originally defined on the natural numbers using computable functions, to these different types of objects. Common examples of numberings include Gödel numberings in first-order logic, the description numbers that arise from universal Turing machines and admissible numberings of the set of partial computable functions. Definition and examples A numbering of a set S is a surjective partial function from \mathbb to ''S'' (Ershov 1999:477). The value of a numbering ''ν'' at a number ''i'' (if defined) is often written ''ν''''i'' instead of the usual \nu(i) \!. Examples of numberings include: * The set of all finite subsets of \mathbb has a numbering \gamma , defined so that \gamma(0) = \emptyset and so th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


One Equivalent Numbering
In computability theory a numbering is the assignment of natural numbers to a set of objects such as functions, rational numbers, graphs, or words in some formal language. A numbering can be used to transfer the idea of computability and related concepts, which are originally defined on the natural numbers using computable functions, to these different types of objects. Common examples of numberings include Gödel numberings in first-order logic, the description numbers that arise from universal Turing machines and admissible numberings of the set of partial computable functions. Definition and examples A numbering of a set S is a surjective partial function from \mathbb to ''S'' (Ershov 1999:477). The value of a numbering ''ν'' at a number ''i'' (if defined) is often written ''ν''''i'' instead of the usual \nu(i) \!. Examples of numberings include: * The set of all finite subsets of \mathbb has a numbering \gamma , defined so that \gamma(0) = \emptyset and so that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cylindrification
In computability theory a cylindrification is a construction that associates a cylindric numbering In computability theory a cylindric numbering is a special kind of numbering first introduced by Yuri L. Ershov in 1973. If a numbering \nu is reducible to \mu then there exists a computable function f with \nu = \mu \circ f. Usually f is not ... to each numbering. The concept was first introduced by Yuri L. Ershov in 1973. Definition Given a numbering \nu, the cylindrification c(\nu) is defined as :\mathrm(c(\nu)) := \{\langle n, k \rangle , n \in \mathrm{Domain}(\nu)\} :c(\nu)\langle n, k \rangle := \nu(n) where \langle n, k \rangle is the Cantor pairing function. Note that the cylindrification operation increases the input arity by 1. Properties * Given two numberings \nu and \mu then \nu \le \mu \Leftrightarrow c(\nu) \le_1 c(\mu) * \nu \le_1 c(\nu) References * Yu. L. Ershov, "Theorie der Numerierungen I." Zeitschrift für mathematische Logik und Grundlagen der ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\in A, and \mathbf_(x)=0 otherwise, where \mathbf_A is a common notation for the indicator function. Other common notations are I_A, and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, :\mathbf_(x)= \in A For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition The indicator function of a subset of a set is a function \mathbf_A \colon X \to \ defined as \mathbf_A(x) := \begin 1 ~&\text~ x \in A~, \\ 0 ~&\text~ x \notin A~. \end The Iverson bracket provides the equivalent notation, \in A/math> or to be used instead of \mathbf_(x)\,. The function \mathbf_A is sometimes denoted , , , or even just . Nota ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel Numbering
In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. The concept was developed by Kurt Gödel for the proof of his incompleteness theorems. () A Gödel numbering can be interpreted as an encoding in which a number is assigned to each symbol of a mathematical notation, after which a sequence of natural numbers can then represent a sequence of symbols. These sequences of natural numbers can again be represented by single natural numbers, facilitating their manipulation in formal theories of arithmetic. Since the publishing of Gödel's paper in 1931, the term "Gödel numbering" or "Gödel code" has been used to refer to more general assignments of natural numbers to mathematical objects. Simplified overview Gödel noted that each statement within a system can be represented by a natural number (its ''Gödel number''). The significance of this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Idempotent
Idempotence (, ) is the property of certain operation (mathematics), operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projector (linear algebra), projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency). The term was introduced by American mathematician Benjamin Peirce in 1870 in the context of elements of algebras that remain invariant when raised to a positive integer power, and literally means "(the quality of having) the same power", from + ''wikt:potence, potence'' (same + power). Definition An element x of a set S equipped with a binary operator \cdot is said to be ''idempotent'' under \cdot if : . The ''binary operation'' \cdot is said to be ''idempotent'' if : . Examples * In the monoid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]