HOME
*





Curtright Field
In theoretical physics, the Curtright field (named after Thomas Curtright) is a tensor quantum field of mixed symmetry, whose gauge-invariant dynamics are dual to those of the general relativistic graviton in higher (''D''>4) spacetime dimensions. Or at least this holds for the linearized theory. For the full nonlinear theory, less is known. Several difficulties arise when interactions of mixed symmetry fields are considered, but at least in situations involving an infinite number of such fields (notably string theory) these difficulties are not insurmountable. The Lanczos tensor has a gauge-transformation dynamics similar to that of Curtright. But Lanczos tensor exists only in 4D. Overview In four spacetime dimensions, the field is not dual to the graviton, if massless, but it can be used to describe ''massive'', pure spin 2 quanta. Similar descriptions exist for other massive higher spins, in ''D''≥4. The simplest example of the linearized theory is given by a rank three ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minkowski Metric
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of Three-dimensional space, three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two Event (relativity), events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity. Minkowski space is closely associated with Albert Einstein, Einstein's theories of special relativity and general relativity and is the most common mathematical structure on which special relativity is formulated. While the individual components in Euclidean space and time may differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total distance in spacetime betwee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

String Theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and conde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Montonen–Olive Duality
Montonen–Olive duality or electric–magnetic duality is the oldest known example of strong–weak duality or S-duality according to current terminology. It generalizes the electro-magnetic symmetry of Maxwell's equations by stating that magnetic monopoles, which are usually viewed as emergent quasiparticles that are "composite" (i.e. they are solitons or topological defects), can in fact be viewed as "elementary" quantized particles with electrons playing the reverse role of "composite" topological solitons; the viewpoints are equivalent and the situation dependent on the duality. It was later proven to hold true when dealing with a ''N'' = 4 supersymmetric Yang–Mills theory. It is named after Finnish physicist Claus Montonen and British physicist David Olive after they proposed the idea in their academic paper '' Magnetic monopoles as gauge particles?'' where they state: S-duality is now a basic ingredient in topological quantum field theories and string theories, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Massive Gravity
In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light. Massive gravity has a long and winding history, dating back to the 1930s when Wolfgang Pauli and Markus Fierz first developed a theory of a massive spin-2 field propagating on a flat spacetime background. It was later realized in the 1970s that theories of a massive graviton suffered from dangerous pathologies, including a ghost mode and a discontinuity with general relativity in the limit where the graviton mass goes to zero. While solutions to these problems had existed for some time in three spacetime dimensions, they were not solved in four dimensions and higher until the work of Claudia de Rham, Gregory Gabadadze, and Andrew Tolley (dRGT model) in 2010. One of the very early massive gravity theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dual Graviton
In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions. The dual graviton was first hypothesized in 1980. It was theoretically modeled in 2000s, which was then predicted in eleven-dimensional mathematics of SO(8) supergravity in the framework of electric-magnetic duality. It again emerged in the ''E''11 generalized geometry in eleven dimensions, and the ''E''7 generalized vielbein-geometry in eleven dimensions. While there is no local coupling between graviton and dual graviton, the field introduced by dual graviton may be coupled to a BF model as non-local gravitational fields in extra dimensions. A ''massive'' dual gravity of Ogievetsky–Polubarinov model can be obtained by coupling the dual graviton field to the curl of its own energy-momentum tensor. The previously mentioned theories of dual gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




P-form Electrodynamics
In theoretical physics, -form electrodynamics is a generalization of Maxwell's theory of electromagnetism. Ordinary (via. one-form) Abelian electrodynamics We have a one-form \mathbf, a gauge symmetry :\mathbf \rightarrow \mathbf + d\alpha , where \alpha is any arbitrary fixed 0-form and d is the exterior derivative, and a gauge-invariant vector current \mathbf with density 1 satisfying the continuity equation :d\mathbf = 0 , where is the Hodge star operator. Alternatively, we may express \mathbf as a closed -form, but we do not consider that case here. \mathbf is a gauge-invariant 2-form defined as the exterior derivative \mathbf = d\mathbf. \mathbf satisfies the equation of motion :d\mathbf = \mathbf (this equation obviously implies the continuity equation). This can be derived from the action :S=\int_M \left frac\mathbf \wedge \mathbf - \mathbf \wedge \mathbf\right, where M is the spacetime manifold. ''p''-form Abelian electrodynamics We have a -form \mathbf, a gaug ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kalb–Ramond Field
In theoretical physics in general and string theory in particular, the Kalb–Ramond field (named after Michael Kalb and Pierre Ramond), also known as the Kalb–Ramond ''B''-field or Kalb–Ramond NS–NS ''B''-field, is a quantum field that transforms as a two- form, i.e., an antisymmetric tensor field with two indices. The adjective "NS" reflects the fact that in the RNS formalism, these fields appear in the NS–NS sector in which all vector fermions are anti-periodic. Both uses of the word "NS" refer to André Neveu and John Henry Schwarz, who studied such boundary conditions (the so-called Neveu–Schwarz boundary conditions) and the fields that satisfy them in 1971. Details The Kalb–Ramond field generalizes the electromagnetic potential but it has two indices instead of one. This difference is related to the fact that the electromagnetic potential is integrated over one-dimensional worldlines of particles to obtain one of its contributions to the action while the Kalb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Massive Particle
The physics technical term massive particle refers to a massful particle which has real non-zero rest mass (such as baryonic matter), the counter-part to the term massless particle. According to special relativity, the velocity of a massive particle is always less than the speed of light. When highlighting relativistic speeds, the synonyms bradyon (from el, βραδύς, ''bradys'', “slow”), tardyon or ittyon are sometimes used to contrast with luxon (which moves at light speed) and hypothetical tachyon (which moves faster than light). Dark matter Types of massive particles include weakly interacting and stable massive particles, which are hypothesized to constitute dark matter. See also * Elementary particle * Massless particle * Particle * Tachyon A tachyon () or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are not consistent with the known laws of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

String Theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity. String theory is a broad and varied subject that attempts to address a number of deep questions of fundamental physics. String theory has contributed a number of advances to mathematical physics, which have been applied to a variety of problems in black hole physics, early universe cosmology, nuclear physics, and conde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Field
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the ''symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called ''gauge bosons' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer Partition
In number theory and combinatorics, a partition of a positive integer , also called an integer partition, is a way of writing as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.) For example, can be partitioned in five distinct ways: : : : : : The order-dependent composition is the same partition as , and the two distinct compositions and represent the same partition as . A summand in a partition is also called a part. The number of partitions of is given by the partition function . So . The notation means that is a partition of . Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials and of the symmetric group and in group representation theory in general. Examples The seven partitions of 5 are: * 5 * 4 + 1 * 3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]