Cuboid Simple
In geometry, a cuboid is a hexahedron with quadrilateral faces, meaning it is a polyhedron with six faces; it has eight vertices and twelve edges. A ''rectangular cuboid'' (sometimes also called a "cuboid") has all right angles and equal opposite rectangular faces. Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. General cuboids have many different types. When all of the rectangular cuboid's edges are equal in length, it results in a cube, with six square faces and adjacent faces meeting at right angles. Along with the rectangular cuboids, ''parallelepiped'' is a cuboid with six parallelogram faces. ''Rhombohedron'' is a cuboid with six rhombus faces. A '' square frustum'' is a frustum with a square base, but the rest of its faces are quadrilaterals ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generic Quadrilateral Hexahedron
Generic or generics may refer to: In business * Generic term, a common name used for a range or class of similar things not protected by trademark * Generic brand, a brand for a product that does not have an associated brand or trademark, other than the trading name of the business providing the product * Generic trademark, a trademark that sometimes or usually replaces a common term in colloquial usage * Generic drug, a drug identified by its chemical name rather than its brand name In computer programming * Generic function, a computer programming entity made up of all methods having the same name * Generic programming, a computer programming paradigm based on method/functions or classes defined irrespective of the concrete data types used upon instantiation ** Generics in Java In linguistics *A pronoun or other word used with a less specific meaning, such as: ** generic ''you'' ** generic ''he'' or generic ''she'' ** generic ''they'' * Generic mood, a grammatical mood used ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parallelogram
In Euclidean geometry, a parallelogram is a simple polygon, simple (non-list of self-intersecting polygons, self-intersecting) quadrilateral with two pairs of Parallel (geometry), parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence (geometry), congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations. By comparison, a quadrilateral with at least one pair of parallel sides is a trapezoid in American English or a trapezium in British English. The three-dimensional counterpart of a parallelogram is a parallelepiped. The word "parallelogram" comes from the Greek παραλληλό-γραμμον, ''parallēló-grammon'', which means "a shape of parallel lines". Special cases *Rectangle – A par ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rhombus
In plane Euclidean geometry, a rhombus (: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the Diamonds (suit), diamonds suit in playing cards which resembles the projection of an Octahedron#Orthogonal projections, octahedral diamond, or a lozenge (shape), lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle (which some authors call a calisson after calisson, the French sweet—also see Polyiamond), and the latter sometimes refers specifically to a rhombus with a 45° angle. Every rhombus is simple polygon, simple (non-self-intersecting), and is a special case of a parallelogram and a Kite (geometry), kite. A rhombus with right angles is a square. Etymology The word "rhombus" comes from , meaning something that spins, which derives from the verb , roman ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trigonal Trapezohedron
In geometry, a trigonal trapezohedron is a polyhedron with six congruent quadrilateral faces, which may be scalene or rhomboid. The variety with rhombus-shaped faces faces is a rhombohedron. An alternative name for the same shape is the ''trigonal deltohedron''. Geometry Six identical rhombic faces can construct two configurations of trigonal trapezohedra. The ''acute'' or ''prolate'' form has three acute angle corners of the rhombic faces meeting at the two polar axis vertices. The ''obtuse'' or ''oblate'' or ''flat'' form has three obtuse angle corners of the rhombic faces meeting at the two polar axis vertices. More strongly than having all faces congruent, the trigonal trapezohedra are isohedral figures, meaning that they have symmetries that take any face to any other face. Special cases A cube is a special case of a trigonal trapezohedron, since a square is a special case of a rhombus. A gyroelongated triangular bipyramid constructed with equilateral triangles can al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Congruence (geometry)
In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other. More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. Therefore, two distinct plane figures on a piece of paper are congruent if they can be cut out and then matched up completely. Turning the paper over is permitted. In elementary geometry the word ''congruent'' is often used as follows. The word ''equal'' is often used in place of ''congruent'' for these objects. *Two line segments are congruent if they have the same length. *Two angles are congruent if they have the same measure. *Two circles are congruent if they have ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cube
A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It is a type of parallelepiped, with pairs of parallel opposite faces, and more specifically a rhombohedron, with congruent edges, and a rectangular cuboid, with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron. The cube can be represented in many ways, one of which is the graph known as the cubical graph. It can be constructed by using the Cartesian product of graphs. The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract. A cube with 1, unit s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hexahedron
A hexahedron (: hexahedra or hexahedrons) or sexahedron (: sexahedra or sexahedrons) is any polyhedron with six faces. A cube, for example, is a regular hexahedron with all its faces square, and three squares around each vertex. There are seven topologically distinct ''convex'' hexahedra, one of which exists in two mirror image forms. Additional non-convex hexahedra exist, with their number depending on how polyhedra are defined. Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces. Convex Cuboid A hexahedron that is combinatorially equivalent to a cube may be called a cuboid, although this term is often used more specifically to mean a rectangular cuboid, a hexahedron with six rectangular sides. Different types of cuboids include the ones depicted and linked below. Others There a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hexahedra
A hexahedron (: hexahedra or hexahedrons) or sexahedron (: sexahedra or sexahedrons) is any polyhedron with six faces. A cube, for example, is a regular hexahedron with all its faces square, and three squares around each vertex. There are seven topologically distinct ''convex'' hexahedra, one of which exists in two mirror image forms. Additional non-convex hexahedra exist, with their number depending on how polyhedra are defined. Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces. Convex Cuboid A hexahedron that is combinatorially equivalent to a cube may be called a cuboid, although this term is often used more specifically to mean a rectangular cuboid, a hexahedron with six rectangular sides. Different types of cuboids include the ones depicted and linked below. Others There are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Pyramid
In geometry, a square pyramid is a Pyramid (geometry), pyramid with a square base and four triangles, having a total of five faces. If the Apex (geometry), apex of the pyramid is directly above the center of the square, it is a ''right square pyramid'' with four isosceles triangles; otherwise, it is an ''oblique square pyramid''. When all of the pyramid's edges are equal in length, its triangles are all equilateral triangle, equilateral. It is called an ''equilateral square pyramid'', an example of a Johnson solid. Square pyramids have appeared throughout the history of architecture, with examples being Egyptian pyramids and many other similar buildings. They also occur in chemistry in Square pyramidal molecular geometry, square pyramidal molecular structures. Square pyramids are often used in the construction of other polyhedra. Many mathematicians in ancient times discovered the formula for the volume of a square pyramid with different approaches. Special cases Right squar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Apex (geometry)
In geometry, an apex (: apices) is the vertex which is in some sense the "highest" of the figure to which it belongs. The term is typically used to refer to the vertex opposite from some " base". The word is derived from the Latin for 'summit, peak, tip, top, extreme end'. The term apex may be used in different contexts: * In an isosceles triangle, the apex is the vertex where the two sides of equal length meet, opposite the unequal third side. * In a pyramid or cone In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the '' apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines ..., the apex is the vertex at the "top" (opposite the base). In a pyramid, the vertex is the point that is part of all the lateral faces, or where all the lateral edges meet. References Parts of a triangle Polyhedra {{elementary-geometry-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truncation (geometry)
In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new Facet (geometry), facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids. Uniform truncation In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths. There are no degrees of freedom, and it represents a fixed geometric, just like the regular polyhedra. In general all single ringed uniform polytopes have a uniform truncation. For example, the icosidodecahedron, represented as Schläfli symbols r or \begin 5 \\ 3 \end, and Coxeter-Dynkin diagram or has a uniform truncation, the truncate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |