HOME
*



picture info

Critters (cellular Automaton)
Critters is a reversible block cellular automaton with similar dynamics to Conway's Game of Life,.. first described by Tommaso Toffoli and Norman Margolus in 1987.. Definition Critters is defined on a two-dimensional infinite grid of cells, which may be identified with the integer lattice. As in Conway's Game of Life, at any point in time each cell may be in one of two states: alive or dead. The Critters rule is a block cellular automaton using the Margolus neighborhood. This means that, at each step, the cells of the automaton are partitioned into 2 × 2 blocks and each block is updated independently of the other blocks. The center of a block at one time step becomes the corner of four blocks at the next time step, and vice versa; in this way, the four cells in each block belong to four different 2 × 2 blocks of the previous partition. The transition function for Critters counts the number of live cells in a block, and if this number is exactly two it leaves ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Critters Block Automaton
Critter may refer to: * Critter (chess), a Slovak chess engine * Critters (cellular automaton) * ''Critters'' (comics), an anthology comic book published by Fantagraphics Books * Critters (film series) ** ''Critters'' (film), the first film in the series * Fearsome critters, legendary monsters said to live in North America * The Critters, an American pop group * The mascot and call sign of ValuJet Airlines * A fan of the popular Dungeons and Dragons series ''Critical Role'' * "The Critter", a Chinese pangolin See also * Little Critter This is a list of the works of Mercer Mayer. The following is a partial list of books that Mercer Mayer has written and/or illustrated. It also includes books and items that are related to Mercer Mayer and his creations (like coloring books, sti ...
, a series of children's books by Mercer Mayer {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Periodic Boundary Conditions
Periodic boundary conditions (PBCs) are a set of boundary conditions which are often chosen for approximating a large (infinite) system by using a small part called a ''unit cell''. PBCs are often used in computer simulations and mathematical models. The topology of two-dimensional PBC is equal to that of a ''world map'' of some video games; the geometry of the unit cell satisfies perfect two-dimensional tiling, and when an object passes through one side of the unit cell, it re-appears on the opposite side with the same velocity. In topological terms, the space made by two-dimensional PBCs can be thought of as being mapped onto a torus (compactification). The large systems approximated by PBCs consist of an infinite number of unit cells. In computer simulations, one of these is the original simulation box, and others are copies called ''images''. During the simulation, only the properties of the original simulation box need to be recorded and propagated. The ''minimum-image conventi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetry
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definition, and is usually used to refer to an object that is invariant under some transformations; including translation, reflection, rotation or scaling. Although these two meanings of "symmetry" can sometimes be told apart, they are intricately related, and hence are discussed together in this article. Mathematical symmetry may be observed with respect to the passage of time; as a spatial relationship; through geometric transformations; through other kinds of functional transformations; and as an aspect of abstract objects, including theoretic models, language, and music. This article describes symmetry from three perspectives: in mathematics, including geometry, the most familiar type of symmetry for many people; in science and nature ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conservation Law
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge. There are also many approximate conservation laws, which apply to such quantities as mass, parity, lepton number, baryon number, strangeness, hypercharge, etc. These quantities are conserved in certain classes of physics processes, but not in all. A local conservation law is usually expressed mathematically as a continuity equation, a partial differential equation which gives a relation between the amount of the quantity and the "transport" of that quantity. It states that the amount of the conserved quantity at a point or within a volume can only change by the amount of the quantity which flows in or out of the volume. From Noether's theorem, each conservation la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oscillator (cellular Automaton)
In a cellular automaton, an oscillator is a pattern that returns to its original state, in the same orientation and position, after a finite number of generations. Thus the evolution of such a pattern repeats itself indefinitely. Depending on context, the term may also include spaceships as well. The smallest number of generations it takes before the pattern returns to its initial condition is called the ''period'' of the oscillator. An oscillator with a period of 1 is usually called a still life, as such a pattern never changes. Sometimes, still lifes are not taken to be oscillators. Another common stipulation is that an oscillator must be finite. Examples In Conway's Game of Life, finite oscillators are known to exist for all periods except 19 and 41. Additionally, until July 2022, the only known examples for period 34 were considered trivial because they consisted of essentially separate components that oscillate at smaller periods. For instance, one can create a period 34 osc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spaceship (cellular Automaton)
In a cellular automaton, a finite pattern is called a spaceship if it reappears after a certain number of generations in the same orientation but in a different position. The smallest such number of generations is called the period of the spaceship. Description The speed of a spaceship is often expressed in terms of ''c'', the metaphorical speed of light (one cell per generation) which in many cellular automata is the fastest that an effect can spread. For example, a glider in Conway's Game of Life is said to have a speed of c/4, as it takes four generations for a given state to be translated by one cell. Similarly, the ''lightweight spaceship'' is said to have a speed of c/2, as it takes four generations for a given state to be translated by two cells. More generally, if a spaceship in a 2D automaton with the Moore neighborhood is translated by (x, y) after n generations, then the speed v is defined as: This notation can be readily generalised to cellular automata with di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Billiard-ball Computer
A billiard-ball computer, a type of conservative logic circuit, is an idealized model of a reversible mechanical computer based on Newtonian dynamics, proposed in 1982 by Edward Fredkin and Tommaso Toffoli. Instead of using electronic signals like a conventional computer, it relies on the motion of spherical billiard balls in a friction-free environment made of buffers against which the balls bounce perfectly. It was devised to investigate the relation between computation and reversible processes in physics. Simulating circuits with billiard balls This model can be used to simulate Boolean circuits in which the wires of the circuit correspond to paths on which one of the balls may travel, the signal on a wire is encoded by the presence or absence of a ball on that path, and the gates of the circuit are simulated by collisions of balls at points where their paths cross. In particular, it is possible to set up the paths of the balls and the buffers around them to form a reversible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Walk
In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion), the search path of a foraging animal, or the price of a fluctuating stock and the financial status of a gambler. Random walks have applications to engineering and many scientific fields including ecology, psychology, computer science, physics, chemistry, biology, economics, and sociology. The term ''random walk'' was first introduced by Karl Pearson in 1905. Lattice random walk A popular random walk model is that of a random walk on a regular lattice, where at each step the location jumps to another site according to some probability distribution. In a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glider (Conway's Life)
The glider is a pattern that travels across the board in Conway's Game of Life. It was first discovered by Richard K. Guy in 1969, while John Conway's group was attempting to track the evolution of the R-pentomino. Gliders are the smallest spaceships, and they travel diagonally at a speed of one cell every four generations, or c/4. The glider is often produced from randomly generated starting configurations. The name comes from the fact that, after two steps, the glider pattern repeats its configuration with a glide reflection symmetry. After four steps and two glide reflections, it returns to its original orientation. John Conway remarked that he wished he hadn't called it the glider. The game was developed before the widespread use of interactive computers, and after seeing it animated, he feels the glider looks more like an ant walking across the plane. Importance Gliders are important to the Game of Life because they are easily produced, can be collided with each other ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Critters Transition Rule
Critter may refer to: * Critter (chess), a Slovak chess engine * Critters (cellular automaton) * ''Critters'' (comics), an anthology comic book published by Fantagraphics Books * Critters (film series) ** ''Critters'' (film), the first film in the series * Fearsome critters, legendary monsters said to live in North America * The Critters, an American pop group * The mascot and call sign of ValuJet Airlines * A fan of the popular Dungeons and Dragons series ''Critical Role'' * "The Critter", a Chinese pangolin See also * Little Critter This is a list of the works of Mercer Mayer. The following is a partial list of books that Mercer Mayer has written and/or illustrated. It also includes books and items that are related to Mercer Mayer and his creations (like coloring books, sti ...
, a series of children's books by Mercer Mayer {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer Lattice
In mathematics, the -dimensional integer lattice (or cubic lattice), denoted , is the lattice in the Euclidean space whose lattice points are -tuples of integers. The two-dimensional integer lattice is also called the square lattice, or grid lattice. is the simplest example of a root lattice. The integer lattice is an odd unimodular lattice. Automorphism group The automorphism group (or group of congruences) of the integer lattice consists of all permutations and sign changes of the coordinates, and is of order 2''n'' ''n''!. As a matrix group it is given by the set of all ''n''×''n'' signed permutation matrices. This group is isomorphic to the semidirect product :(\mathbb Z_2)^n \rtimes S_n where the symmetric group ''S''''n'' acts on (Z2)''n'' by permutation (this is a classic example of a wreath product). For the square lattice, this is the group of the square, or the dihedral group of order 8; for the three-dimensional cubic lattice, we get the group of the cube, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Norman Margolus
Norman H. Margolus (born 1955) is a Canadian-American physicist and computer scientist, known for his work on cellular automata and reversible computing.. He is a research affiliate with the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Education and career Margolus received his Ph.D. in physics in 1987 from the Massachusetts Institute of Technology (MIT) under the supervision of Edward Fredkin. He founded and was chief scientist for Permabit, an information storage device company. Research contributions Margolus was one of the organizers of a seminal research meeting on the connections between physics and computation theory, held on Mosquito Island in 1982. He is known for inventing the block cellular automaton and the Margolus neighborhood for block cellular automata, which he used to develop cellular automaton simulations of billiard-ball computers.. Reprinted in . In the same work, Margolus also showed that the bil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]