HOME
*





Coxeter Matroid
In mathematics, Coxeter matroids are generalization of matroids depending on a choice of a Coxeter group ''W'' and a parabolic subgroup ''P''. Ordinary matroids correspond to the case when ''P'' is a maximal parabolic subgroup of a symmetric group ''W''. They were introduced by , who named them after H. S. M. Coxeter. give a detailed account of Coxeter matroids. Definition Suppose that ''W'' is a Coxeter group, generated by a set ''S'' of involutions, and ''P'' is a parabolic subgroup (the subgroup generated by some subset of ''S''). A Coxeter matroid is a subset ''M'' of ''W''/''P'' that for every ''w'' in ''W'', ''M'' contains a unique minimal element with respect to the ''w''-Bruhat order. Relation to matroids Suppose that the Coxeter group ''W'' is the symmetric group ''S''''n'' and ''P'' is the parabolic subgroup ''S''''k''×''S''''n''–''k''. Then ''W''/''P'' can be identified with the ''k''-element subsets of the ''n''-element set and the elements ''w'' of ''W'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matroid
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory. Definition There are many equivalent ( cryptomorphic) ways to define a (finite) matroid.A standard source for basic definitions and results about matroids is Oxley (1992). An older standard source is Welsh (1976). See Brylawsk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups , and finite Coxeter groups were classified in 1935 . Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional Kac–Moody algebras. Standard ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parabolic Subgroup
In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgroup of invertible upper triangular matrices is a Borel subgroup. For groups realized over algebraically closed fields, there is a single conjugacy class of Borel subgroups. Borel subgroups are one of the two key ingredients in understanding the structure of simple (more generally, reductive) algebraic groups, in Jacques Tits' theory of groups with a (B,N) pair. Here the group ''B'' is a Borel subgroup and ''N'' is the normalizer of a maximal torus contained in ''B''. The notion was introduced by Armand Borel, who played a leading role in the development of the theory of algebraic groups. Parabolic subgroups Subgroups between a Borel subgroup ''B'' and the ambient group ''G'' are called parabolic subgroups. Parabolic subgroups ''P'' are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bruhat Order
In mathematics, the Bruhat order (also called strong order or strong Bruhat order or Chevalley order or Bruhat–Chevalley order or Chevalley–Bruhat order) is a partial order on the elements of a Coxeter group, that corresponds to the inclusion order on Schubert varieties. History The Bruhat order on the Schubert varieties of a flag manifold or a Grassmannian was first studied by , and the analogue for more general semisimple algebraic groups was studied by . started the combinatorial study of the Bruhat order on the Weyl group, and introduced the name "Bruhat order" because of the relation to the Bruhat decomposition introduced by François Bruhat. The left and right weak Bruhat orderings were studied by . Definition If (''W'', ''S'') is a Coxeter system with generators ''S'', then the Bruhat order is a partial order on the group ''W''. Recall that a reduced word for an element ''w'' of ''W'' is a minimal length expression of ''w'' as a product of elements of ''S'', and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \mathrm_n defined over a finite set of n symbols consists of the permutations that can be performed on the n symbols. Since there are n! (n factorial) such permutation operations, the order (number of elements) of the symmetric group \mathrm_n is n!. Although symmetric groups can be defined on infinite sets, this article focuses on the finite symmetric groups: their applications, their elements, their conjugacy classes, a finite presentation, their subgroups, their automorphism groups, and their representation theory. For the remainder of this article, "symmetric group" will mean a symmetric group on a finite set. The symmetric group is important to diverse areas of mathematics such as Galois theory, invariant theory, the representatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gale Ordering
A gale is a strong wind; the word is typically used as a descriptor in nautical contexts. The U.S. National Weather Service defines a gale as sustained surface winds moving at a speed of between 34 and 47 knots (, or ).National Weather Service Glossary
s.v
"gale"
Forecasters typically issue s when winds of this strength are expected. In the , a gale warning is specifically a maritime warning; the land-based equivalent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matroid Theory
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory. Definition There are many equivalent ( cryptomorphic) ways to define a (finite) matroid.A standard source for basic definitions and results about matroids is Oxley (1992). An older standard source is Welsh (1976). See Brylawski' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]