HOME
*



picture info

Coxeter Graph
In the mathematical field of graph theory, the Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. It is one of the 13 known cubic distance-regular graphs. It is named after Harold Scott MacDonald Coxeter. Properties The Coxeter graph has chromatic number 3, chromatic index 3, radius 4, diameter 4 and girth 7. It is also a 3- vertex-connected graph and a 3- edge-connected graph. It has book thickness 3 and queue number 2. The Coxeter graph is hypohamiltonian: it does not itself have a Hamiltonian cycle but every graph formed by removing a single vertex from it is Hamiltonian. It has rectilinear crossing number 11, and is the smallest cubic graph with that crossing number . Construction The simplest construction of a Coxeter graph is from a Fano plane. Take the 7C3 = 35 possible 3-combinations on 7 objects. Discard the 7 triplets that correspond to the lines of the Fano plane, leaving 28 triplets. Link two triplets if they are disjoint. The result is the Cox ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Graph
In the mathematical field of graph theory, the Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. It is one of the 13 known cubic distance-regular graphs. It is named after Harold Scott MacDonald Coxeter. Properties The Coxeter graph has chromatic number 3, chromatic index 3, radius 4, diameter 4 and girth 7. It is also a 3- vertex-connected graph and a 3- edge-connected graph. It has book thickness 3 and queue number 2. The Coxeter graph is hypohamiltonian: it does not itself have a Hamiltonian cycle but every graph formed by removing a single vertex from it is Hamiltonian. It has rectilinear crossing number 11, and is the smallest cubic graph with that crossing number . Construction The simplest construction of a Coxeter graph is from a Fano plane. Take the 7C3 = 35 possible 3-combinations on 7 objects. Discard the 7 triplets that correspond to the lines of the Fano plane, leaving 28 triplets. Link two triplets if they are disjoint. The result is the Cox ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Book Thickness
In graph theory, a book embedding is a generalization of planar embedding of a graph to embeddings into a ''book'', a collection of half-planes all having the same line as their boundary. Usually, the vertices of the graph are required to lie on this boundary line, called the ''spine'', and the edges are required to stay within a single half-plane. The book thickness of a graph is the smallest possible number of half-planes for any book embedding of the graph. Book thickness is also called pagenumber, stacknumber or fixed outerthickness. Book embeddings have also been used to define several other graph invariants including the pagewidth and book crossing number. Every graph with vertices has book thickness at most \lceil n/2\rceil, and this formula gives the exact book thickness for complete graphs. The graphs with book thickness one are the outerplanar graphs. The graphs with book thickness at most two are the subhamiltonian graphs, which are always planar; more generally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Graph
In the mathematical field of graph theory, a graph is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices and of , there is an automorphism :f : V(G) \rightarrow V(G) such that :f(u_1) = u_2 and f(v_1) = v_2. In other words, a graph is symmetric if its automorphism group acts transitively on ordered pairs of adjacent vertices (that is, upon edges considered as having a direction). Such a graph is sometimes also called -transitive or flag-transitive. By definition (ignoring and ), a symmetric graph without isolated vertices must also be vertex-transitive. Since the definition above maps one edge to another, a symmetric graph must also be edge-transitive. However, an edge-transitive graph need not be symmetric, since might map to , but not to . Star graphs are a simple example of being edge-transitive without being vertex-transitive or symmetric. As a further example, semi-symmetric graphs are edge-transitive and regular, but not vertex-transitiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independent Set (graph Theory)
In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set S of vertices such that for every two vertices in S, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in S. A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening. A maximal independent set is an independent set that is not a proper subset of any other independent set. A maximum independent set is an independent set of largest possible size for a given graph G. This size is called the independence number of ''G'' and is usually denoted by \alpha(G). The optimization problem of finding such a set is called the maximum independent set problem. It is a strongly NP-hard problem. As su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Graph Theory
The ''Journal of Graph Theory'' is a peer-reviewed mathematics journal specializing in graph theory and related areas, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. It is published by John Wiley & Sons. The journal was established in 1977 by Frank Harary.Frank Harary
a biographical sketch at the ACM site
The are
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heawood Graph
Heawood is a surname. Notable people with the surname include: * Jonathan Heawood, British journalist *Percy John Heawood (1861–1955), British mathematician **Heawood conjecture ** Heawood graph **Heawood number In mathematics, the Heawood number of a surface is an upper bound for the number of colors that suffice to color any graph embedded in the surface. In 1890 Heawood proved for all surfaces ''except'' the sphere that no more than : H(S)=\left\lfl ... See also * Heywood (surname) {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kneser Graph
In graph theory, the Kneser graph (alternatively ) is the graph whose vertices correspond to the -element subsets of a set of elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1956. Examples The Kneser graph is the complete graph on vertices. The Kneser graph is the complement of the line graph of the complete graph on vertices. The Kneser graph is the odd graph ; in particular is the Petersen graph (see top right figure). The Kneser graph , visualized on the right. Properties Basic properties The Kneser graph K(n,k) has \tbinom vertices. Each vertex has exactly \tbinom neighbors. The Kneser graph is vertex transitive and arc transitive. When k=2, the Kneser graph is a strongly regular graph, with parameters ( \tbinom, \tbinom, \tbinom, \tbinom ). However, it is not strongly regular when k>2, as different pairs of nonadjacent vert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Induced Subgraph
In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges (from the original graph) connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) be any graph, and let S\subset V be any subset of vertices of . Then the induced subgraph G is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S . That is, for any two vertices u,v\in S , u and v are adjacent in G if and only if they are adjacent in G . The same definition works for undirected graphs, directed graphs, and even multigraphs. The induced subgraph G may also be called the subgraph induced in G by S , or (if context makes the choice of G unambiguous) the induced subgraph of S . Examples Important types of induced subgraphs include the following. * Induced paths are induced subgraphs that are paths. The shortest path betwee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combination
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a ''k''-combination of a set ''S'' is a subset of ''k'' distinct elements of ''S''. So, two combinations are identical if and only if each combination has the same members. (The arrangement of the members in each set does not matter.) If the set has ''n'' elements, the number of ''k''-combinations, denoted as C^n_k, is equal to the binomial coefficient \binom nk = \frac, which can be written using factorials as \textstyle\frac whenever k\leq n, and which is zero when k>n. This formula can be derived from the fact that each ''k''-combination of a set ''S'' of ''n'' members has k! permutations so P^n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fano Plane
In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is . Here stands for "projective geometry", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one). The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study. Homogeneous coordi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]