HOME
*





Courant Algebroid
In a field of mathematics known as differential geometry, a Courant geometry was originally introduced by Zhang-Ju Liu, Alan Weinstein and Ping Xu in their investigation of doubles of Lie bialgebroids in 1997. Liu, Weinstein and Xu named it after Courant, who had implicitly devised earlier in 1990 the standard prototype of Courant algebroid through his discovery of a skew symmetric bracket on TM\oplus T^*M, called Courant bracket today, which fails to satisfy the Jacobi identity. Both this standard example and the double of a Lie bialgebra are special instances of Courant algebroids. Definition A Courant algebroid consists of the data a vector bundle E\to M with a bracket ,.\Gamma E \times \Gamma E \to \Gamma E, a non degenerate fiber-wise inner product \langle.,.\rangle: E\times E\to M\times\R, and a bundle map \rho:E\to TM subject to the following axioms, : phi, [\chi, \psi = \phi, \chi">chi,_\psi.html" ;"title="phi, [\chi, \psi">phi, [\chi, \psi = \phi, \chi \psi] + [\chi, [ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complexification
In mathematics, the complexification of a vector space over the field of real numbers (a "real vector space") yields a vector space over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for (a space over the real numbers) may also serve as a basis for over the complex numbers. Formal definition Let V be a real vector space. The of is defined by taking the tensor product of V with the complex numbers (thought of as a 2-dimensional vector space over the reals): :V^ = V\otimes_ \Complex\,. The subscript, \R, on the tensor product indicates that the tensor product is taken over the real numbers (since V is a real vector space this is the only sensible option anyway, so the subscript can safely be omitted). As it stands, V^ is only a real vector space. However, we can make V^ into a complex vector space by defining complex multiplication as follows: :\alpha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Poisson Manifold
In differential geometry, a Poisson structure on a smooth manifold M is a Lie bracket \ (called a Poisson bracket in this special case) on the algebra (M) of smooth functions on M , subject to the Leibniz rule : \ = \h + g \ . Equivalently, \ defines a Lie algebra structure on the vector space (M) of smooth functions on M such that X_:= \: (M) \to (M) is a vector field for each smooth function f (making (M) into a Poisson algebra). Poisson structures on manifolds were introduced by André Lichnerowicz in 1977. They were further studied in the classical paper of Alan Weinstein, where many basic structure theorems were first proved, and which exerted a huge influence on the development of Poisson geometry — which today is deeply entangled with non-commutative geometry, integrable systems, topological field theories and representation theory, to name a few. Poisson structures are named after the French mathematician Siméon Denis Poisson, due to their ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Structure
In mathematics a Dirac structure is a geometric construction generalizing both symplectic structures and Poisson structures, and having several applications to mechanics. It is based on the notion of constraint introduced by Paul Dirac and was first introduced by Ted Courant and Alan Weinstein. In more detail, let ''V'' be a real vector space, and ''V*'' its dual. A (linear) ''Dirac structure'' on ''V'' is a linear subspace ''D'' of V\times V^* satisfying * for all (v,\alpha)\in D one has \left\langle\alpha,\,v\right\rangle=0, * ''D'' is maximal with respect to this property. In particular, if ''V'' is finite dimensional then the second criterion is satisfied if \dim D = \dim V. (Similar definitions can be made for vector spaces over other fields.) An alternative (equivalent) definition often used is that D satisfies D=D^\perp, where orthogonality is with respect to the symmetric bilinear form on V\times V^* given by \bigl\langle(u,\alpha),\,(v,\beta)\bigr\rangle = \left\langle\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Complex Geometry
In the field of mathematics known as differential geometry, a generalized complex structure is a property of a differential manifold that includes as special cases a complex structure and a symplectic structure. Generalized complex structures were introduced by Nigel Hitchin in 2002 and further developed by his students Marco Gualtieri and Gil Cavalcanti. These structures first arose in Hitchin's program of characterizing geometrical structures via functionals of differential forms, a connection which formed the basis of Robbert Dijkgraaf, Sergei Gukov, Andrew Neitzke and Cumrun Vafa's 2004 proposal that topological string theories are special cases of a topological M-theory. Today generalized complex structures also play a leading role in physical string theory, as supersymmetric flux compactifications, which relate 10-dimensional physics to 4-dimensional worlds like ours, require (possibly twisted) generalized complex structures. Definition The generalized tangent bundle C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dorfman Bracket
In a field of mathematics known as differential geometry, the Courant bracket is a generalization of the Lie bracket from an operation on the tangent bundle to an operation on the direct sum of the tangent bundle and the vector bundle of ''p''-forms. The case ''p'' = 1 was introduced by Theodore James Courant in his 1990 doctoral dissertation as a structure that bridges Poisson geometry and pre-symplectic geometry, based on work with his advisor Alan Weinstein. The twisted version of the Courant bracket was introduced in 2001 by Pavol Severa, and studied in collaboration with Weinstein. Today a complex version of the ''p''=1 Courant bracket plays a central role in the field of generalized complex geometry, introduced by Nigel Hitchin in 2002. Closure under the Courant bracket is the integrability condition of a generalized almost complex structure. Definition Let ''X'' and ''Y'' be vector fields on an N-dimensional real manifold ''M'' and let ''ξ'' and ''η'' be ''p''-form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bilinear Form
In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called ''scalars''). In other words, a bilinear form is a function that is linear in each argument separately: * and * and The dot product on \R^n is an example of a bilinear form. The definition of a bilinear form can be extended to include modules over a ring, with linear maps replaced by module homomorphisms. When is the field of complex numbers , one is often more interested in sesquilinear forms, which are similar to bilinear forms but are conjugate linear in one argument. Coordinate representation Let be an -dimensional vector space with basis . The matrix ''A'', defined by is called the ''matrix of the bilinear form'' on the basis . If the matrix represents a vector with respect to this basis, and analogously, represents another vector , then: B(\mathbf, \mathbf) = \mathbf^\textsf A\mathbf = \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]