Correlation Immunity
In mathematics, the correlation immunity of a Boolean function is a measure of the degree to which its outputs are uncorrelated with some subset of its inputs. Specifically, a Boolean function is said to be correlation-immune ''of order m'' if every subset of ''m'' or fewer variables in x_1,x_2,\ldots,x_n is statistically independent of the value of f(x_1,x_2,\ldots,x_n). Definition A function f:\mathbb_2^n\rightarrow\mathbb_2 is k-th order correlation immune if for any independent n binary random variables X_0\ldots X_, the random variable Z=f(X_0,\ldots,X_) is independent from any random vector (X_\ldots X_) with 0\leq i_1<\ldots Results in cryptography When used in a as a combining function for[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boolean Function
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form f:\^k \to \, where \ is known as the Boolean domain and k is a non-negative integer called the arity of the function. In the case where k=0, the function is a constant element of \. A Boolean function with multiple outputs, f:\^k \to \^m with m>1 is a ''vectorial'' or ''vector-valued'' Boolean function (an S-box in symmetric cryptography). There are 2^ different Boolean functions with k arguments; equal to the number of different truth tables with 2^k entries. Every k-ary Boolean function can be expressed as a propositional formula in k variables x_1,...,x_k, and two propositional formulas are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistically Independent
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. Mutual independence implies pairwise independence, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stream Cipher
stream cipher is a symmetric key cipher where plaintext digits are combined with a pseudorandom cipher digit stream (keystream). In a stream cipher, each plaintext digit is encrypted one at a time with the corresponding digit of the keystream, to give a digit of the ciphertext stream. Since encryption of each digit is dependent on the current state of the cipher, it is also known as ''state cipher''. In practice, a digit is typically a bit and the combining operation is an exclusive-or (XOR). The pseudorandom keystream is typically generated serially from a random seed value using digital shift registers. The seed value serves as the cryptographic key for decrypting the ciphertext stream. Stream ciphers represent a different approach to symmetric encryption from block ciphers. Block ciphers operate on large blocks of digits with a fixed, unvarying transformation. This distinction is not always clear-cut: in some modes of operation, a block cipher primitive is used in such a w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Feedback Shift Register
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value. The initial value of the LFSR is called the seed, and because the operation of the register is deterministic, the stream of values produced by the register is completely determined by its current (or previous) state. Likewise, because the register has a finite number of possible states, it must eventually enter a repeating cycle. However, an LFSR with a well-chosen feedback function can produce a sequence of bits that appears random and has a very long cycle. Applications of LFSRs include generating pseudo-random numbers, pseudo-noise sequences, fast digital counters, and whitening sequences. Both hardware and software implementations o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Correlation Attack
In cryptography, correlation attacks are a class of known-plaintext attacks for breaking stream ciphers whose keystream is generated by combining the output of several linear-feedback shift registers (LFSRs) using a Boolean function. Correlation attacks exploit a statistical weakness arising from certain choices of the Boolean function. The cipher is not inherently insecure if there is a choice of the Boolean function that avoids this weakness. Explanation Correlation attacks are possible when there is a significant correlation between the output state of an individual LFSR in the keystream generator and the output of the Boolean function that combines the output state of all of the LFSRs. In combination with partial knowledge of the keystream, which is derived from partial knowledge of the plaintext, the two are simply compared using an XOR logic gate. This allows an attacker to brute-force the key for the individual LFSR and the rest of the system separately. For instance, if ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Degree
Algebraic may refer to any subject related to algebra in mathematics and related branches like algebraic number theory and algebraic topology. The word algebra itself has several meanings. Algebraic may also refer to: * Algebraic data type, a datatype in computer programming each of whose values is data from other datatypes wrapped in one of the constructors of the datatype * Algebraic numbers, a complex number that is a root of a non-zero polynomial in one variable with integer coefficients * Algebraic functions, functions satisfying certain polynomials * Algebraic element, an element of a field extension which is a root of some polynomial over the base field * Algebraic extension, a field extension such that every element is an algebraic element over the base field * Algebraic definition, a definition in mathematical logic which is given using only equalities between terms * Algebraic structure, a set with one or more finitary operations defined on it * Algebraic, the order of ent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |