Conic Bundle
   HOME





Conic Bundle
In algebraic geometry, a conic bundle is an algebraic variety that appears as a solution to a Cartesian equation of the form: : X^2 + aXY + b Y^2 = P (T).\, Conic bundles can be considered as either a Severi–Brauer or Châtelet surface. This can be a double covering of a ruled surface. It can be associated with the symbol (a, P) in the second Galois cohomology of the field k through an isomorphism. In practice, it is more commonly observed as a surface with a well-understood divisor class group, and the simplest cases share with Del Pezzo surfaces the property of being a rational surface. But many problems of contemporary mathematics remain open, notably, for those examples which are not rational, the question of unirationality. Expression In order to properly express a conic bundle, one must first simplify the quadratic form on the left side. This can be achieved through a transformation, such as: : X^2 - aY^2 = P (T). \, This is followed by placement in projective spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Quadratic Form
In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example, 4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form ''over'' . Over the reals, a quadratic form is said to be '' definite'' if it takes the value zero only when all its variables are simultaneously zero; otherwise it is '' isotropic''. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory ( orthogonal groups), differential geometry (the Riemannian metric, the second fundamental form), differential topology ( intersection forms of manifolds, especially four-manifolds), Lie theory (the Killing form), and statistics (where the exponent of a zero-mean multivariate normal distribution has the quadratic form -\mathbf^\math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Springer Science+Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


List Of Complex And Algebraic Surfaces
This is a list of named algebraic surfaces, compact complex surfaces, and families thereof, sorted according to their Kodaira dimension following Enriques–Kodaira classification. Kodaira dimension −∞ Rational surfaces * Projective plane Quadric surfaces *Cone (geometry) *Cylinder *Ellipsoid *Hyperboloid *Paraboloid *Sphere *Spheroid Rational cubic surfaces * Cayley nodal cubic surface, a certain cubic surface with 4 nodes * Cayley's ruled cubic surface * Clebsch surface or Klein icosahedral surface * Fermat cubic * Monkey saddle * Parabolic conoid * Plücker's conoid * Whitney umbrella Rational quartic surfaces * Châtelet surfaces * Dupin cyclides, inversions of a cylinder, torus, or double cone in a sphere * Gabriel's horn * Right circular conoid * Roman surface or Steiner surface, a realization of the real projective plane in real affine space * Tori, surfaces of revolution generated by a circle about a coplanar axis Other rational surfaces in space * B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Intersection Number (algebraic Geometry)
In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their intersection is the point at which they meet. More generally, in set theory, the intersection of sets is defined to be the set of elements which belong to all of them. Unlike the Euclidean definition, this does not presume that the objects under consideration lie in a common space. It simply means the overlapping area of two or more objects or geometries. Intersection is one of the basic concepts of geometry. An intersection can have various geometric shapes, but a point is the most common in a plane geometry. Incidence geometry defines an intersection (usually, of flats) as an object of lower dimension that is incident to each of the original objects. In this approach an intersection can be sometimes undefined, such as for parallel lin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Algebraic Surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, but, in the Italian school of algebraic geometry , and are up to 100 years old. Classification by the Kodaira dimension In the case of dimension one, varieties are classified by only the topological genus, but, in dimension two, one needs to distinguish the arithmetic genus p_a and the geometric genus p_g because one cannot distinguish birationally only the topological genus. Then, irregularity is introduced for the classification of varieties. A summary of the results (in detail, for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Characteristic Zero
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest positive number of copies of the ring's identity element, multiplicative identity () that will sum to the additive identity (). If no such number exists, the ring is said to have characteristic zero. That is, is the smallest positive number such that: : \underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: : \underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). This definition applies in the more general class of Rng (algebra), rngs (see '); for (unital) ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Reciprocal Polynomial
In algebra, given a polynomial :p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n, with coefficients from an arbitrary field, its reciprocal polynomial or reflected polynomial,* denoted by or , is the polynomial :p^*(x) = a_n + a_x + \cdots + a_0x^n = x^n p(x^). That is, the coefficients of are the coefficients of in reverse order. Reciprocal polynomials arise naturally in linear algebra as the characteristic polynomial of the inverse of a matrix. In the special case where the field is the complex numbers, when :p(z) = a_0 + a_1z + a_2z^2 + \cdots + a_nz^n, the conjugate reciprocal polynomial, denoted , is defined by, :p^(z) = \overline + \overlinez + \cdots + \overlinez^n = z^n\overline, where \overline denotes the complex conjugate of a_i, and is also called the reciprocal polynomial when no confusion can arise. A polynomial is called self-reciprocal or palindromic if . The coefficients of a self-reciprocal polynomial satisfy for all . Properties Reciprocal polynomial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Homogeneous Coordinates
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work , are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. They have the advantage that the coordinates of points, including points at infinity, can be represented using finite coordinates. Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix. They are also used in fundamental elliptic curve cryptography algorithms. If homogeneous coordinates of a point are multiplied by a non-zero scalar then the resulting coordinates represent the same point. Since homogeneous coordinates are also given to points at infini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Unirationality
In mathematics, a rational variety is an algebraic variety, over a given field ''K'', which is birationally equivalent to a projective space of some dimension over ''K''. This means that its function field is isomorphic to :K(U_1, \dots , U_d), the field of all rational functions for some set \ of indeterminates, where ''d'' is the dimension of the variety. Rationality and parameterization Let ''V'' be an affine algebraic variety of dimension ''d'' defined by a prime ideal ''I'' = ⟨''f''1, ..., ''f''''k''⟩ in K _1, \dots , X_n/math>. If ''V'' is rational, then there are ''n'' + 1 polynomials ''g''0, ..., ''g''''n'' in K(U_1, \dots , U_d) such that f_i(g_1/g_0, \ldots, g_n/g_0)=0. In other words, we have a x_i=\frac(u_1,\ldots,u_d) of the variety. Conversely, such a rational parameterization induces a field homomorphism of the field of functions of ''V'' into K(U_1, \dots , U_d). But this homomorphism is not necessarily onto. If such a parameterization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]