HOME
*





Conformal Geometric Algebra
Conformal geometric algebra (CGA) is the geometric algebra constructed over the resultant space of a map from points in an -dimensional base space to null vectors in . This allows operations on the base space, including reflections, rotations and translations to be represented using versors of the geometric algebra; and it is found that points, lines, planes, circles and spheres gain particularly natural and computationally amenable representations. The effect of the mapping is that generalized (i.e. including zero curvature) -spheres in the base space map onto -blades, and so that the effect of a translation (or ''any'' conformal mapping) of the base space corresponds to a rotation in the higher-dimensional space. In the algebra of this space, based on the geometric product of vectors, such transformations correspond to the algebra's characteristic sandwich operations, similar to the use of quaternions for spatial rotation in 3D, which combine very efficiently. A consequenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Algebra
In mathematics, a geometric algebra (also known as a real Clifford algebra) is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions. The geometric product was first briefly mentioned by Hermann Grassmann, who was chiefly interested in developing the closely related exterior algebra. In 1878, William Kingdon Clifford greatly expanded on Grassmann's work to form what are now usually called Clifford algebras in his honor (although Clifford himself chose to call them "geometric algebras"). Clifford defined the Clifford algebra and its product as a unification of the Grassmann algebra and Hamilton's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Point At Infinity
In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Adjoining these points produces a projective plane, in which no point can be distinguished, if we "forget" which points were added. This holds for a geometry over any field, and more generally over any division ring. In the real case, a point at infinity completes a line into a topologically closed curve. In higher dimensions, all the points at infinity form a projective subspace of one dimension less than that of the whole projective space to which they belong. A point at infinity can also be added to the complex line (which may be thought of as the complex plane), thereby turning it into a closed surface known as the complex projective line, CP1, also called the Riemann sphere (when complex numbers are mapped to each point). In the case ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Geometry
In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale. Study of the flat structures is sometimes termed Möbius geometry, and is a type of Klein geometry. Conformal manifolds A conformal manifold is a pseudo-Riemannian manifold equipped with an equivalence class of metric tensors, in which two metrics ''g'' and ''h'' are equivalent if and only if :h = \lambda^2 g , where ''λ'' is a real-valued smooth function defined on the manifold and is called the conformal factor. An equivalence cla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advances In Applied Clifford Algebras
''Advances in Applied Clifford Algebras'' is a peer-reviewed scientific journal that publishes original research papers and also notes, expository and survey articles, book reviews, reproduces abstracts and also reports on conferences and workshops in the area of Clifford algebras and their applications to other branches of mathematics and physics, and in certain cognate areas. There is a vibrant and interdisciplinary community around Clifford and Geometric Algebras with a wide range of applications. The main conferences in this subject include thInternational Conference on Clifford Algebras and their Applications in Mathematical Physics (ICCA)anApplications of Geometric Algebra in Computer Science and Engineering (AGACSE)series. The journal was established in 1991 by Jaime Keller who was its editor-in-chief until his death in 2011. The second editor-in-chief of the journal was Waldyr Alves Rodrigues Jr. (Universidade Estadual de Campinas), and the current editor-in-chief is Uw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dilation (metric Space)
In mathematics, a dilation is a function f from a metric space M into itself that satisfies the identity :d(f(x),f(y))=rd(x,y) for all points x, y \in M, where d(x, y) is the distance from x to y and r is some positive real number. In Euclidean space, such a dilation is a similarity of the space. Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point that is called the ''center of dilation''. Some congruences have fixed points and others do not.. See also * Homothety * Dilation (operator theory) In operator theory, a dilation of an operator ''T'' on a Hilbert space ''H'' is an operator on a larger Hilbert space ''K'', whose restriction to ''H'' composed with the orthogonal projection onto ''H'' is ''T''. More formally, let ''T'' be a boun ... References {{DEFAULTSORT:Dilation (Metric Space) Metric geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Liouville's Theorem (conformal Mappings)
In mathematics, Liouville's theorem, proved by Joseph Liouville in 1850, is a rigidity theorem about conformal mappings in Euclidean space. It states that any smooth conformal mapping on a domain of R''n'', where ''n'' > 2, can be expressed as a composition of translations, similarities, orthogonal transformations and inversions: they are Möbius transformations (in ''n'' dimensions). Philip Hartman (1947Systems of Total Differential Equations and Liouville's theorem on Conformal MappingAmerican Journal of Mathematics 69(2);329–332. This theorem severely limits the variety of possible conformal mappings in R3 and higher-dimensional spaces. By contrast, conformal mappings in R2 can be much more complicated – for example, all simply connected planar domains are conformally equivalent, by the Riemann mapping theorem. Generalizations of the theorem hold for transformations that are only weakly differentiable . The focus of such a study is the non-linear Cauchy–Ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Transformation
In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space. (A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a proper rigid transformation, or rototranslation. Any proper rigid transformation can be decomposed into a rotation followed by a translation, while any improper rigid transformation can be decomposed into an improper rotation followed by a translation, or into a sequence of reflections. Any object wil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inversion Transformation
In mathematical physics, inversion transformations are a natural extension of Poincaré transformations to include all conformal one-to-one transformations on coordinate space-time. They are less studied in physics because unlike the rotations and translations of Poincaré symmetry an object cannot be physically transformed by the inversion symmetry. Some physical theories are invariant under this symmetry, in these cases it is what is known as a 'hidden symmetry'. Other hidden symmetries of physics include gauge symmetry and general covariance. Early use In 1831 the mathematician Ludwig Immanuel Magnus began to publish on transformations of the plane generated by inversion in a circle of radius ''R''. His work initiated a large body of publications, now called inversive geometry. The most prominently named mathematician became August Ferdinand Möbius once he reduced the planar transformations to complex number arithmetic. In the company of physicists employing the inversion tra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Chasles' Theorem (kinematics)
In kinematics, Chasles' theorem, or Mozzi–Chasles' theorem, says that the most general rigid body displacement can be produced by a translation along a line (called its screw axis or Mozzi axis) followed (or preceded) by a rotation about an axis parallel to that line. History The proof that a spatial displacement can be decomposed into a rotation and slide around and along a line is attributed to the astronomer and mathematician Giulio Mozzi (1763), in fact the screw axis is traditionally called asse di Mozzi in Italy. However, most textbooks refer to a subsequent similar work by Michel Chasles dating from 1830. Several other contemporaries of M. Chasles obtained the same or similar results around that time, including G. Giorgini, Cauchy, Poinsot, Poisson and Rodrigues. An account of the 1763 proof by Giulio Mozzi and some of its history can be found here. Proof Mozzi considers a rigid body undergoing first a rotation about an axis passing through the center of mass and then a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Distance
In geometry, the perpendicular distance between two objects is the distance from one to the other, measured along a line that is perpendicular to one or both. The distance from a point to a line is the distance to the nearest point on that line. That is the point at which a segment from it to the given point is perpendicular to the line. Likewise, the distance from a point to a curve is measured by a line segment that is perpendicular to a tangent line to the curve at the nearest point on the curve. The distance from a point to a plane is measured as the length from the point along a segment that is perpendicular to the plane, meaning that it is perpendicular to all lines in the plane that pass through the nearest point in the plane to the given point. Other instances include: *''Point on plane closest to origin'', for the perpendicular distance from the origin to a plane in three-dimensional space *'' Nearest distance between skew lines'', for the perpendicular distance between t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flat (geometry)
In geometry, a flat or Euclidean subspace is a subset of a Euclidean space that is itself a Euclidean space (of lower dimension). The flats in two-dimensional space are points and lines, and the flats in three-dimensional space are points, lines, and planes. In a -dimensional space, there are flats of every dimension from 0 to ; flats of dimension are called ''hyperplanes''. Flats are the affine subspaces of Euclidean spaces, which means that they are similar to linear subspaces, except that they need not pass through the origin. Flats occur in linear algebra, as geometric realizations of solution sets of systems of linear equations. A flat is a manifold and an algebraic variety, and is sometimes called a ''linear manifold'' or ''linear variety'' to distinguish it from other manifolds or varieties. Descriptions By equations A flat can be described by a system of linear equations. For example, a line in two-dimensional space can be described by a single linear equation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-sphere
In mathematics and theoretical physics, a quasi-sphere is a generalization of the hypersphere and the hyperplane to the context of a pseudo-Euclidean space. It may be described as the set of points for which the quadratic form for the space applied to the displacement vector from a centre point is a constant value, with the inclusion of hyperplanes as a limiting case. Notation and terminology This article uses the following notation and terminology: * A pseudo-Euclidean vector space, denoted , is a real vector space with a nondegenerate quadratic form with signature . The quadratic form is permitted to be definite (where or ), making this a generalization of a Euclidean vector space. * A pseudo-Euclidean space, denoted , is a real affine space in which displacement vectors are the elements of the space . It is distinguished from the vector space. * The quadratic form acting on a vector , denoted , is a generalization of the squared Euclidean distance in a Euclidean space. É ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]