HOME
*





Complex Multiplication Of Abelian Varieties
In mathematics, an abelian variety ''A'' defined over a field ''K'' is said to have CM-type if it has a large enough commutative subring in its endomorphism ring End(''A''). The terminology here is from complex multiplication theory, which was developed for elliptic curves in the nineteenth century. One of the major achievements in algebraic number theory and algebraic geometry of the twentieth century was to find the correct formulations of the corresponding theory for abelian varieties of dimension ''d'' > 1. The problem is at a deeper level of abstraction, because it is much harder to manipulate analytic functions of several complex variables. The formal definition is that : \operatorname_\mathbb(A) the tensor product of End(''A'') with the rational number field Q, should contain a commutative subring of dimension 2''d'' over Q. When ''d'' = 1 this can only be a quadratic field, and one recovers the cases where End(''A'') is an order in an imaginary quadratic field. For ''d'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order (ring Theory)
In mathematics, an order in the sense of ring theory is a subring \mathcal of a ring A, such that #''A'' is a finite-dimensional algebra over the field \mathbb of rational numbers #\mathcal spans ''A'' over \mathbb, and #\mathcal is a \mathbb-lattice in ''A''. The last two conditions can be stated in less formal terms: Additively, \mathcal is a free abelian group generated by a basis for ''A'' over \mathbb. More generally for ''R'' an integral domain contained in a field ''K'', we define \mathcal to be an ''R''-order in a ''K''-algebra ''A'' if it is a subring of ''A'' which is a full ''R''-lattice. When ''A'' is not a commutative ring, the idea of order is still important, but the phenomena are different. For example, the Hurwitz quaternions form a maximal order in the quaternions with rational co-ordinates; they are not the quaternions with integer coordinates in the most obvious sense. Maximal orders exist in general, but need not be unique: there is in general no largest or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tangent Space
In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on the manifold. Informal description In differential geometry, one can attach to every point x of a differentiable manifold a ''tangent space''—a real vector space that intuitively contains the possible directions in which one can tangentially pass through x . The elements of the tangent space at x are called the ''tangent vectors'' at x . This is a generalization of the notion of a vector, based at a given initial point, in a Euclidean space. The dimension of the tangent space at every point of a connected manifold is the same as that of the manifold itself. For example, if the given manifold is a 2 -sphere, then one can picture the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemann Relations
In mathematics, a Riemann form in the theory of abelian varieties and modular forms, is the following data: * A lattice Λ in a complex vector space Cg. * An alternating bilinear form α from Λ to the integers satisfying the following Riemann bilinear relations: # the real linear extension αR:Cg × Cg→R of α satisfies αR(''iv'', ''iw'')=αR(''v'', ''w'') for all (''v'', ''w'') in Cg × Cg; # the associated hermitian form ''H''(''v'', ''w'')=αR(''iv'', ''w'') + ''i''αR(''v'', ''w'') is positive-definite. (The hermitian form written here is linear in the first variable.) Riemann forms are important because of the following: * The alternatization of the Chern class of any factor of automorphy In mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the quotient space. Often the space is a complex manifold and the group is a discrete group. Facto ... is a Riemann form. * Conversely ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lattice (group)
In geometry and group theory, a lattice in the real coordinate space \mathbb^n is an infinite set of points in this space with the properties that coordinate wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point. Closure under addition and subtraction means that a lattice must be a subgroup of the additive group of the points in the space, and the requirements of minimum and maximum distance can be summarized by saying that a lattice is a Delone set. More abstractly, a lattice can be described as a free abelian group of dimension n which spans the vector space \mathbb^n. For any basis of \mathbb^n, the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice, and every lattice can be formed from a basis in this way. A lattice may be viewed as a regula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rosati Involution
In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarization. Let A be an abelian variety, let \hat = \mathrm^0(A) be the dual abelian variety, and for a\in A, let T_a:A\to A be the translation-by-a map, T_a(x)=x+a. Then each divisor D on A defines a map \phi_D:A\to\hat A via \phi_D(a)= _a^*D-D/math>. The map \phi_D is a polarization if D is ample. The Rosati involution of \mathrm(A)\otimes\mathbb relative to the polarization \phi_D sends a map \psi\in\mathrm(A)\otimes\mathbb to the map \psi'=\phi_D^\circ\hat\psi\circ\phi_D, where \hat\psi:\hat A\to\hat A is the dual map induced by the action of \psi^* on \mathrm(A). Let \mathrm(A) denote the Néron–Severi group of A. The polarization \phi_D also induces an inclusion \Phi:\mathrm(A)\otimes\mathbb\to\mathrm(A)\otimes\mathbb via \Phi_E=\phi_D^\circ\phi_E. The image of \Phi is equal to \, i.e., the set of endomorphisms fixed by th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Involution (mathematics)
In mathematics, an involution, involutory function, or self-inverse function is a function that is its own inverse, : for all in the domain of . Equivalently, applying twice produces the original value. General properties Any involution is a bijection. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x \mapsto -x), reciprocation (x \mapsto 1/x), and complex conjugation (z \mapsto \bar z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher. The composition of two involutions ''f'' and ''g'' is an involution if and only if they commute: . Involutions on finite sets The number of involutions, including the identity involution, on a set with elements is given by a recurrence relation found by Heinrich August Rothe in 1800: :a_0 = a_1 = 1 and a_n = a_ + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Number Field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind usual rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. A prominent example of a field is the field of rational numbers, commonly denoted together with its usual operations of addition and multiplication. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Of Definition
In mathematics, the field of definition of an algebraic variety ''V'' is essentially the smallest field to which the coefficients of the polynomials defining ''V'' can belong. Given polynomials, with coefficients in a field ''K'', it may not be obvious whether there is a smaller field ''k'', and other polynomials defined over ''k'', which still define ''V''. The issue of field of definition is of concern in diophantine geometry. Notation Throughout this article, ''k'' denotes a field. The algebraic closure of a field is denoted by adding a superscript of "alg", e.g. the algebraic closure of ''k'' is ''k''alg. The symbols Q, R, C, and F''p'' represent, respectively, the field of rational numbers, the field of real numbers, the field of complex numbers, and the finite field containing ''p'' elements. Affine ''n''-space over a field ''F'' is denoted by A''n''(''F''). Definitions for affine and projective varieties Results and definitions stated below, for affine varieties, can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''-tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Examples A deck of cards An ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simple Abelian Variety
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined ''over'' that field. Historically the first abelian varieties to be studied were those defined over the field of complex numbers. Such abelian varieties turn out to be exactly those complex tori that can be embedded into a complex projective space. Abelian varieties defined over algebraic number fields are a special case, which is important also from the viewpoint of number theory. Localization techniques lead naturally from abe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Totally Real Field
In number theory, a number field ''F'' is called totally real if for each embedding of ''F'' into the complex numbers the image lies inside the real numbers. Equivalent conditions are that ''F'' is generated over Q by one root of an integer polynomial ''P'', all of the roots of ''P'' being real; or that the tensor product algebra of ''F'' with the real field, over Q, is isomorphic to a tensor power of R. For example, quadratic fields ''F'' of degree 2 over Q are either real (and then totally real), or complex, depending on whether the square root of a positive or negative number is adjoined to Q. In the case of cubic fields, a cubic integer polynomial ''P'' irreducible over Q will have at least one real root. If it has one real and two complex roots the corresponding cubic extension of Q defined by adjoining the real root will ''not'' be totally real, although it is a field of real numbers. The totally real number fields play a significant special role in algebraic number theory. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]