HOME
*



picture info

Coenergy
In physics and engineering, Coenergy (or co-energy) is a non-physical quantity, measured in energy units, used in theoretical analysis of energy in physical systems.U.A. Bakshi, M.V. Bakshi, Electrical Machines - I, Technical Publications Pune, India, May 2006, , page 11The concept of co-energy can be applied to many conservative systems (inertial mechanical, electromagnetic, etc.), which can be described by a linear relationship between the input and stored energy.The co-energy analysis techniques cannot be applied to non-linear systems. However, small nonlinearities are often neglected by linearisation of the problems. Example - magnetic coenergy Consider a system with a single coil and a non-moving armature (I.E. no mechanical work is done). Hence, all of the electric energy supplied to the device is stored in the magnetic field. dW_\text = dW_\text \qquad (dW_\text = 0) where (''e'' is the voltage, ''i'' is the current, and \lambda is the flux linkage): dW_\text = e i \, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Coenergy
In physics and engineering, Coenergy (or co-energy) is a non-physical quantity, measured in energy units, used in theoretical analysis of energy in physical systems.U.A. Bakshi, M.V. Bakshi, Electrical Machines - I, Technical Publications Pune, India, May 2006, , page 11The concept of co-energy can be applied to many conservative systems (inertial mechanical, electromagnetic, etc.), which can be described by a linear relationship between the input and stored energy.The co-energy analysis techniques cannot be applied to non-linear systems. However, small nonlinearities are often neglected by linearisation of the problems. Example - magnetic coenergy Consider a system with a single coil and a non-moving armature (I.E. no mechanical work is done). Hence, all of the electric energy supplied to the device is stored in the magnetic field. dW_\text = dW_\text \qquad (dW_\text = 0) where (''e'' is the voltage, ''i'' is the current, and \lambda is the flux linkage): dW_\text = e i \, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conservation Law (physics)
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge. There are also many approximate conservation laws, which apply to such quantities as mass, parity, lepton number, baryon number, strangeness, hypercharge, etc. These quantities are conserved in certain classes of physics processes, but not in all. A local conservation law is usually expressed mathematically as a continuity equation, a partial differential equation which gives a relation between the amount of the quantity and the "transport" of that quantity. It states that the amount of the conserved quantity at a point or within a volume can only change by the amount of the quantity which flows in or out of the volume. From Noether's theorem, each conservation law is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linearisation
In mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as engineering, physics, economics, and ecology. Linearization of a function Linearizations of a function are lines—usually lines that can be used for purposes of calculation. Linearization is an effective method for approximating the output of a function y = f(x) at any x = a based on the value and slope of the function at x = b, given that f(x) is differentiable on , b/math> (or , a/math>) and that a is close to b. In short, linearization approximates the output of a function near x = a. For example, \sqrt = 2. However, what would be a good approx ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Voltage
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to move a test charge between the two points. In the International System of Units, the derived unit for voltage is named ''volt''. The voltage between points can be caused by the build-up of electric charge (e.g., a capacitor), and from an electromotive force (e.g., electromagnetic induction in generator, inductors, and transformers). On a macroscopic scale, a potential difference can be caused by electrochemical processes (e.g., cells and batteries), the pressure-induced piezoelectric effect, and the thermoelectric effect. A voltmeter can be used to measure the voltage between two points in a system. Often a common reference potential such as the ground of the system is used as one of the points. A voltage can represent either a source ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electric Current
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving particles are called charge carriers, which may be one of several types of particles, depending on the conductor. In electric circuits the charge carriers are often electrons moving through a wire. In semiconductors they can be electrons or holes. In an electrolyte the charge carriers are ions, while in plasma, an ionized gas, they are ions and electrons. The SI unit of electric current is the ampere, or ''amp'', which is the flow of electric charge across a surface at the rate of one coulomb per second. The ampere (symbol: A) is an SI base unit. Electric current is measured using a device called an ammeter. Electric currents create magnetic fields, which are used in motors, generators, inductors, and transformers. In ordinary con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flux Linkage
In circuit theory, flux linkage is a property of a two-terminal element. It is an extension rather than an equivalent of magnetic flux and is defined as a time integral :\lambda = \int \mathcal \,dt, where \mathcal is the voltage across the device, or the potential difference between the two terminals. This definition can also be written in differential form as a rate :\mathcal = \frac. Faraday showed that the magnitude of the electromotive force (EMF) generated in a conductor forming a closed loop is proportional to the rate of change of the total magnetic flux passing through the loop (Faraday's law of induction). Thus, for a typical inductance (a coil of conducting wire), the flux linkage is equivalent to magnetic flux, which is the total magnetic field passing through the surface (i.e., normal to that surface) formed by a closed conducting loop coil and is determined by the number of turns in the coil and the magnetic field, i.e., :\lambda = \int\limits_S \vec \cdot d\vec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Magnetic Hysteresis
Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it. Even when the field is removed, part of the alignment will be retained: the material has become ''magnetized''. Once magnetized, the magnet will stay magnetized indefinitely. To demagnetize it requires heat or a magnetic field in the opposite direction. This is the effect that provides the element of memory in a hard disk drive. The relationship between field strength and magnetization is not linear in such materials. If a magnet is demagnetized () and the relationship between and is plotted for increasing levels of field strength, follows the ''initial magnetization curve''. This curve increases rapidly at first and then approaches an asymptote called magnetic saturation. If the magnetic field is now reduced monotonically, follows a different curve. At zero field strength, the magnetization is offset from the origin by an am ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Self Inductance
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the current, and follows any changes in current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called ''back EMF''. Inductance is defined as the ratio of the induced voltage to the rate of change of current causing it. It is a proportionality factor that depends on the geometry of circuit conductors and the magnetic permeability of nearby materials. An electronic component designed to add inductance to a circuit is called an inductor. It typically ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Element Analysis
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems). To solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numerical domain for the solution, which has a finite number of points. The finite element method formulation of a boundary value problem finally results in a system of algebraic equations. The method approximates the unknown function over the domain. The sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]