Clifford Surface
In elliptic geometry, two lines are Clifford parallel or paratactic lines if the perpendicular distance between them is constant from point to point. The concept was first studied by William Kingdon Clifford in elliptic space and appears only in spaces of at least three dimensions. Since parallel lines have the property of equidistance, the term "parallel" was appropriated from Euclidean geometry, although the "lines" of elliptic geometry are geodesic curves and, unlike the lines of Euclidean geometry, are of finite length. The algebra of quaternions provides a descriptive geometry of elliptic space in which Clifford parallelism is made explicit. Introduction The lines on 1 in elliptic space are described by versors with a fixed axis ''r'':Georges Lemaître (1948) "Quaternions et espace elliptique", ''Acta'' Pontifical Academy of Sciences 12:57–78 :\lbrace e^ :\ 0 \le a < \pi \rbrace For an arbitrary point ''u'' in elliptic space, two Clifford parallels to this line pa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Geometry
Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point (rather than two). Because of this, the elliptic geometry described in this article is sometimes referred to as ''single elliptic geometry'' whereas spherical geometry is sometimes referred to as ''double elliptic geometry''. The appearance of this geometry in the nineteenth century stimulated the development of non-Euclidean geometry generally, including hyperbolic geometry. Elliptic geometry has a variety of properties that differ from those of classical Euclidean plane geometry. For example, the sum of the interior angles of any triangle is always greater than 180°. Definitions In elliptic geometry, two lines perpendicular to a given line must intersect. In fact, the perpendiculars o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Guido Fubini
Guido Fubini (19 January 1879 – 6 June 1943) was an Italian mathematician, known for Fubini's theorem and the Fubini–Study metric. Life Born in Venice, he was steered towards mathematics at an early age by his teachers and his father, who was himself a teacher of mathematics. In 1896 he entered the Scuola Normale Superiore di Pisa, where he studied differential geometry under Ulisse Dini and Luigi Bianchi. His 1900 doctoral thesis was about Clifford parallel, Clifford's parallelism in elliptic spaces.G. Fubini (1900) D.H. Delphenich translatoClifford Parallelism in Elliptic Spaces Laurea thesis, Pisa. After earning his doctorate, he took up a series of professorships. In 1901 he began teaching at the University of Catania in Sicily; shortly afterwards he moved to the University of Genoa; and in 1908 he moved to the Politecnico di Torino, Politecnico in Turin and then the University of Turin, where he would stay for a few decades. During this time his research focused prim ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Internet Archive
The Internet Archive is an American digital library with the stated mission of "universal access to all knowledge". It provides free public access to collections of digitized materials, including websites, software applications/games, music, movies/videos, moving images, and millions of books. In addition to its archiving function, the Archive is an activist organization, advocating a free and open Internet. , the Internet Archive holds over 35 million books and texts, 8.5 million movies, videos and TV shows, 894 thousand software programs, 14 million audio files, 4.4 million images, 2.4 million TV clips, 241 thousand concerts, and over 734 billion web pages in the Wayback Machine. The Internet Archive allows the public to upload and download digital material to its data cluster, but the bulk of its data is collected automatically by its web crawlers, which work to preserve as much of the public web as possible. Its web archiving, web archive, the Wayback Machine, contains hu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frederick S
Frederick may refer to: People * Frederick (given name), the name Nobility Anhalt-Harzgerode *Frederick, Prince of Anhalt-Harzgerode (1613–1670) Austria * Frederick I, Duke of Austria (Babenberg), Duke of Austria from 1195 to 1198 * Frederick II, Duke of Austria (1219–1246), last Duke of Austria from the Babenberg dynasty * Frederick the Fair (Frederick I of Austria (Habsburg), 1286–1330), Duke of Austria and King of the Romans Baden * Frederick I, Grand Duke of Baden (1826–1907), Grand Duke of Baden * Frederick II, Grand Duke of Baden (1857–1928), Grand Duke of Baden Bohemia * Frederick, Duke of Bohemia (died 1189), Duke of Olomouc and Bohemia Britain * Frederick, Prince of Wales (1707–1751), eldest son of King George II of Great Britain Brandenburg/Prussia * Frederick I, Elector of Brandenburg (1371–1440), also known as Frederick VI, Burgrave of Nuremberg * Frederick II, Elector of Brandenburg (1413–1470), Margrave of Brandenburg * Frederick William, Elector ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
George Bell & Sons
George Bell & Sons was a book publishing house located in London, United Kingdom, from 1839 to 1986. History George Bell & Sons was founded by George Bell as an educational bookseller, with the intention of selling the output of London university presses; but became best known as an independent publisher of classics and children's books. One of Bell's first investments in publishing was a series of ''Railway Companions''; that is, booklets of timetables and tourist guides. Within a year Bell's publishing business had outstripped his retail business, and he elected to move from his original offices into Fleet Street. There G. Bell & Sons branched into the publication of books on art, architecture, and archaeology, in addition to the classics for which the company was already known. Bell's reputation was only improved by his association with Henry Cole. In the mid-1850s, Bell expanded again, printing the children's books of Margaret Gatty (''Parables from Nature'') and Julia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Duncan Sommerville
Duncan MacLaren Young Sommerville (1879–1934) was a Scottish mathematician and astronomer. He compiled a bibliography on non-Euclidean geometry and also wrote a leading textbook in that field. He also wrote ''Introduction to the Geometry of N Dimensions'', advancing the study of polytopes. He was a co-founder and the first secretary of the New Zealand Astronomical Society. Sommerville was also an accomplished watercolourist, producing a series New Zealand landscapes. The middle name 'MacLaren' is spelt using the old orthography M'Laren in some sources, for example the records of the Royal Society of Edinburgh. Early life Sommerville was born on 24 November 1879 in Beawar in India, where his father the Rev Dr James Sommerville, was employed as a missionary by the United Presbyterian Church of Scotland. His father had been responsible for establishing the hospital at Jodhpur, Rajputana. The family returned home to Perth, Scotland, where Duncan spent 4 years at a private sc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Birkhäuser Verlag
Birkhäuser was a Swiss publisher founded in 1879 by Emil Birkhäuser. It was acquired by Springer Science+Business Media in 1985. Today it is an imprint used by two companies in unrelated fields: * Springer continues to publish science (particularly: history of science, geosciences, computer science) and mathematics books and journals under the Birkhäuser imprint (with a leaf logo) sometimes called Birkhäuser Science. * Birkhäuser Verlag – an architecture and design publishing company was (re)created in 2010 when Springer sold its design and architecture segment to ACTAR. The resulting Spanish-Swiss company was then called ActarBirkhäuser. After a bankruptcy, in 2012 Birkhäuser Verlag was sold again, this time to De Gruyter. Additionally, the Reinach-based printer Birkhäuser+GBC operates independently of the above, being now owned by ''Basler Zeitung''. History The original Swiss publishers program focused on regional literature. In the 1920s the sons of Emil Birkhà ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular 4-polytopes
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. History The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures. Schläfli also found four of the regular star 4-polytopes: the grand 120-cell, great stellated 120-cell, grand 600-cell, and great grand stellated 120-cell. He skipped the remaining six because he would not allow forms that failed the Euler characteristic on cells or vertex figures (for zero-hole tori: ''F'' − ''E'' + ''V'' 2). That excludes cells and vertex figures such as the great dodecahedron and small stellated dodecahedron . Edmund Hess (1843–1903) publishe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Clifford Torus
In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the cartesian product of two circles ''S'' and ''S'' (in the same sense that the surface of a cylinder is "flat"). It is named after William Kingdon Clifford. It resides in R4, as opposed to in R3. To see why R4 is necessary, note that if ''S'' and ''S'' each exists in its own independent embedding space R and R, the resulting product space will be R4 rather than R3. The historically popular view that the cartesian product of two circles is an R3 torus in contrast requires the highly asymmetric application of a rotation operator to the second circle, since that circle will only have one independent axis ''z'' available to it after the first circle consumes ''x'' and ''y''. Stated another way, a torus embedded in R3 is an asymmetric reduced-dimension projection of the maximally symmetric Clifford torus embedded in R4. The relationship is similar to that of projecting the edges of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Klein Quadric
In mathematics, the lines of a 3-dimensional projective space, ''S'', can be viewed as points of a 5-dimensional projective space, ''T''. In that 5-space, the points that represent each line in ''S'' lie on a quadric, ''Q'' known as the Klein quadric. If the underlying vector space of ''S'' is the 4-dimensional vector space ''V'', then ''T'' has as the underlying vector space the 6-dimensional exterior square Λ2''V'' of ''V''. The line coordinates obtained this way are known as Plücker coordinates. These Plücker coordinates satisfy the quadratic relation : p_ p_+p_p_+p_ p_ = 0 defining ''Q'', where : p_ = u_i v_j - u_j v_i are the coordinates of the line spanned by the two vectors ''u'' and ''v''. The 3-space, ''S'', can be reconstructed again from the quadric, ''Q'': the planes contained in ''Q'' fall into two equivalence classes, where planes in the same class meet in a point, and planes in different classes meet in a line or in the empty set. Let these classes be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Roger Penrose
Sir Roger Penrose (born 8 August 1931) is an English mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus fellow of Wadham College, Oxford, and an honorary fellow of St John's College, Cambridge and University College London. Penrose has contributed to the mathematical physics of general relativity and cosmology. He has received several prizes and awards, including the 1988 Wolf Prize in Physics, which he shared with Stephen Hawking for the Penrose–Hawking singularity theorems, and one half of the 2020 Nobel Prize in Physics "for the discovery that black hole formation is a robust prediction of the general theory of relativity". He is regarded as one of the greatest living physicists, mathematicians and scientists, and is particularly noted for the breadth and depth of his work in both natural and formal sciences. Early life and education Bor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |