HOME
*





Clifford Semigroup
A Clifford semigroup (sometimes also called "inverse Clifford semigroup") is a completely regular inverse semigroup In group (mathematics), group theory, an inverse semigroup (occasionally called an inversion semigroup) ''S'' is a semigroup in which every element ''x'' in ''S'' has a unique ''inverse'' ''y'' in ''S'' in the sense that ''x = xyx'' and ''y = yxy'', .... It is an inverse semigroup with xx^=x^x. Examples of Clifford semigroups are groups and commutative inverse semigroups. In a Clifford semigroup,Algebraic characterizations of inverse semigroups and strongly regular rings
theorem 2 (accessed on 14 December 2014) xy=yx \leftrightarrow x^y=yx^.


References


[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completely Regular Semigroup
In mathematics, a completely regular semigroup is a semigroup in which every element is in some subgroup of the semigroup. The class of completely regular semigroups forms an important subclass of the class of regular semigroups, the class of inverse semigroups being another such subclass. Alfred H. Clifford was the first to publish a major paper on completely regular semigroups though he used the terminology "semigroups admitting relative inverses" to refer to such semigroups. The name "completely regular semigroup" stems from Lyapin's book on semigroups. In the Russian literature, completely regular semigroups are often called "Clifford semigroups". In the English literature, the name " Clifford semigroup" is used synonymously to "inverse Clifford semigroup", and refers to a completely regular inverse semigroup. In a completely regular semigroup, each Green ''H''-class is a group and the semigroup is the union of these groups. Hence completely regular semigroups are also referr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Semigroup
In group theory, an inverse semigroup (occasionally called an inversion semigroup) ''S'' is a semigroup in which every element ''x'' in ''S'' has a unique ''inverse'' ''y'' in ''S'' in the sense that ''x = xyx'' and ''y = yxy'', i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries. (The convention followed in this article will be that of writing a function on the right of its argument, e.g. ''x f'' rather than ''f(x)'', and composing functions from left to right—a convention often observed in semigroup theory.) Origins Inverse semigroups were introduced independently by Viktor Vladimirovich Wagner in the Soviet Union in 1952, and by Gordon Preston in the United Kingdom in 1954. Both authors arrived at inverse semigroups via the study of partial bijections of a set: a partial transformation ''α'' of a set ''X'' is a function from ''A'' to '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structures
In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structures of the same type (homo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]