HOME
*





Classical Cryptography
In cryptography, a classical cipher is a type of cipher that was used historically but for the most part, has fallen into disuse. In contrast to modern cryptographic algorithms, most classical ciphers can be practically computed and solved by hand. However, they are also usually very simple to break with modern technology. The term includes the simple systems used since Greek and Roman times, the elaborate Renaissance ciphers, World War II cryptography such as the Enigma machine and beyond. In contrast, modern strong cryptography relies on new algorithms and computers developed since the 1970s. Types of classical ciphers Classical ciphers are often divided into ''transposition ciphers'' and ''substitution ciphers''. Substitution ciphers In a substitution cipher, letters (or groups of letters) are systematically replaced throughout the message for other letters (or groups of letters). A well-known example of a substitution cipher is the Caesar cipher. To encrypt a message with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Block Cipher
In cryptography, a block cipher is a deterministic algorithm operating on fixed-length groups of bits, called ''blocks''. Block ciphers are specified cryptographic primitive, elementary components in the design of many cryptographic protocols and are widely used to encryption, encrypt large amounts of data, including in data exchange protocols. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key. A multitude of block cipher modes of operation, modes of operation have been designed to allow their repeated use in a secure way to achieve the security goals of confidentiality and authentication, authenticity. However, block ciphers may also feature as building blocks in other cryptographic protocols, such as universal hash functions and pseudorandom number generators. Definition A block cipher consists of two paired algorithms, one for encryption, , and the othe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hill Cipher
In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra. Invented by Lester S. Hill in 1929, it was the first polygraphic cipher in which it was practical (though barely) to operate on more than three symbols at once. The following discussion assumes an elementary knowledge of matrices. Encryption Each letter is represented by a number modulo 26. Though this is not an essential feature of the cipher, this simple scheme is often used: To encrypt a message, each block of ''n'' letters (considered as an ''n''-component vector) is multiplied by an invertible ''n'' × ''n'' matrix, against modulus 26. To decrypt the message, each block is multiplied by the inverse of the matrix used for encryption. The matrix used for encryption is the cipher key, and it should be chosen randomly from the set of invertible ''n'' × ''n'' matrices ( modulo 26). The cipher can, of course, be adapted to an alphabet with any number of letters; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Advanced Encryption Standard
The Advanced Encryption Standard (AES), also known by its original name Rijndael (), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant of the Rijndael block cipher developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes. For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits. AES has been adopted by the U.S. government. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data. In the United States, AES was announced by the NIST as U.S. FIPS PUB 197 (FIPS 197) on Novemb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rijndael MixColumns
The MixColumns operation performed by the Rijndael cipher, along with the ShiftRows step, is the primary source of diffusion in Rijndael. Each column is treated as a four-term polynomial b(x) = b_3 x^3 + b_2 x^2 + b_1 x + b_0 which are elements within the field \operatorname(2^8). The coefficients of the polynomials are elements within the prime sub-field \operatorname(2). Each column is multiplied with a fixed polynomial a(x) = 3x^3 + x^2 + x + 2 modulo x^4 + 1; the inverse of this polynomial is a^(x) = 11x^3 + 13x^2 + 9x + 14. MixColumns The operation consists in the modular multiplication of two four-term polynomials whose coefficients are elements of \operatorname\left(2^8\right). The modulus used for this operation is x^4 + 1. The first four-term polynomial coefficients are defined by the state column \beginb_3 & b_2 & b_1 & b_0\end, which contains four bytes. Each byte is a coefficient of the four-term so that : b(x) = b_3 x^3 + b_2 x^2 + b_1 x + b_0. The second f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chosen-ciphertext Attack
A chosen-ciphertext attack (CCA) is an attack model for cryptanalysis where the cryptanalyst can gather information by obtaining the decryptions of chosen ciphertexts. From these pieces of information the adversary can attempt to recover the hidden secret key used for decryption. For formal definitions of security against chosen-ciphertext attacks, see for example: Michael Luby and Mihir Bellare et al. Introduction A number of otherwise secure schemes can be defeated under chosen-ciphertext attack. For example, the El Gamal cryptosystem is semantic security, semantically secure under chosen-plaintext attack, but this semantic security can be trivially defeated under a chosen-ciphertext attack. Early versions of RSA (algorithm), RSA padding used in the Secure Sockets Layer, SSL protocol were vulnerable to a sophisticated adaptive chosen-ciphertext attack which revealed SSL session keys. Chosen-ciphertext attacks have implications for some self-synchronizing stream ciphers as wel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chosen-plaintext Attack
A chosen-plaintext attack (CPA) is an attack model for cryptanalysis which presumes that the attacker can obtain the ciphertexts for arbitrary plaintexts.Ross Anderson, ''Security Engineering: A Guide to Building Dependable Distributed Systems''. The first edition (2001): http://www.cl.cam.ac.uk/~rja14/book.html The goal of the attack is to gain information that reduces the security of the encryption scheme. Modern ciphers aim to provide semantic security, also known as ''ciphertext indistinguishability under chosen-plaintext attack'', and they are therefore, by design, generally immune to chosen-plaintext attacks if correctly implemented. Introduction In a chosen-plaintext attack the adversary can (possibly adaptively) ask for the ciphertexts of arbitrary plaintext messages. This is formalized by allowing the adversary to interact with an encryption oracle, viewed as a black box. The attacker’s goal is to reveal all or a part of the secret encryption key. It may seem infeasi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Known-plaintext Attack
The known-plaintext attack (KPA) is an attack model for cryptanalysis where the attacker has access to both the plaintext (called a crib), and its encrypted version (ciphertext). These can be used to reveal further secret information such as secret keys and code books. The term "crib" originated at Bletchley Park, the British World War II decryption operation, where it was defined as: History The usage "crib" was adapted from a slang term referring to cheating (e.g., "I cribbed my answer from your test paper"). A "crib" originally was a literal or interlinear translation of a foreign-language text—usually a Latin or Greek text—that students might be assigned to translate from the original language. The idea behind a crib is that cryptologists were looking at incomprehensible ciphertext, but if they had a clue about some word or phrase that might be expected to be in the ciphertext, they would have a "wedge," a test to break into it. If their otherwise random attacks on the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kasiski Examination
In cryptanalysis, Kasiski examination (also referred to as Kasiski's test or Kasiski's method) is a method of attacking polyalphabetic substitution ciphers, such as the Vigenère cipher. It was first published by Friedrich Kasiski in 1863, but seems to have been independently discovered by Charles Babbage as early as 1846. How it works In polyalphabetic substitution ciphers where the substitution alphabets are chosen by the use of a keyword, the Kasiski examination allows a cryptanalyst to deduce the length of the keyword. Once the length of the keyword is discovered, the cryptanalyst lines up the ciphertext in ''n'' columns, where ''n'' is the length of the keyword. Then each column can be treated as the ciphertext of a monoalphabetic substitution cipher. As such, each column can be attacked with frequency analysis. Similarly, where a rotor stream cipher machine has been used, this method may allow the deduction of the length of individual rotors. The Kasiski examination invol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vigenère Cipher
The Vigenère cipher () is a method of encryption, encrypting alphabetic text by using a series of interwoven Caesar ciphers, based on the letters of a keyword. It employs a form of polyalphabetic cipher, polyalphabetic substitution. First described by Giovan Battista Bellaso in 1553, the cipher is easy to understand and implement, but it resisted all attempts to break it until 1863, three centuries later. This earned it the description le chiffrage indéchiffrable (French language, French for 'the indecipherable cipher'). Many people have tried to implement encryption schemes that are essentially Vigenère ciphers. In 1863, Friedrich Kasiski was the first to publish a general method of deciphering Vigenère ciphers. In the 19th century, the scheme was misattributed to Blaise de Vigenère (1523–1596) and so acquired its present name. History The very first well-documented description of a polyalphabetic cipher was by Leon Battista Alberti around 1467 and used a metal cipher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frequency Analysis
In cryptanalysis, frequency analysis (also known as counting letters) is the study of the frequency of letters or groups of letters in a ciphertext. The method is used as an aid to breaking classical ciphers. Frequency analysis is based on the fact that, in any given stretch of written language, certain letters and combinations of letters occur with varying frequencies. Moreover, there is a characteristic distribution of letters that is roughly the same for almost all samples of that language. For instance, given a section of English language, , , and are the most common, while , , and are rare. Likewise, , , , and are the most common pairs of letters (termed ''bigrams'' or ''digraphs''), and , , , and are the most common repeats. The nonsense phrase " ETAOIN SHRDLU" represents the 12 most frequent letters in typical English language text. In some ciphers, such properties of the natural language plaintext are preserved in the ciphertext, and these patterns have the pote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Substitution Ciphers
In cryptography, a substitution cipher is a method of encrypting in which units of plaintext are replaced with the ciphertext, in a defined manner, with the help of a key; the "units" may be single letters (the most common), pairs of letters, triplets of letters, mixtures of the above, and so forth. The receiver deciphers the text by performing the inverse substitution process to extract the original message. Substitution ciphers can be compared with transposition ciphers. In a transposition cipher, the units of the plaintext are rearranged in a different and usually quite complex order, but the units themselves are left unchanged. By contrast, in a substitution cipher, the units of the plaintext are retained in the same sequence in the ciphertext, but the units themselves are altered. There are a number of different types of substitution cipher. If the cipher operates on single letters, it is termed a simple substitution cipher; a cipher that operates on larger groups of letters ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]