Circumsphere
In geometry, a circumscribed sphere of a polyhedron is a sphere that contains the polyhedron and touches each of the polyhedron's vertices. The word circumsphere is sometimes used to mean the same thing, by analogy with the term ''circumcircle''. As in the case of two-dimensional circumscribed circles (circumcircles), the radius of a sphere circumscribed around a polyhedron is called the circumradius of , and the center point of this sphere is called the circumcenter of . Existence and optimality When it exists, a circumscribed sphere need not be the smallest sphere containing the polyhedron; for instance, the tetrahedron formed by a vertex of a cube and its three neighbors has the same circumsphere as the cube itself, but can be contained within a smaller sphere having the three neighboring vertices on its equator. However, the smallest sphere containing a given polyhedron is always the circumsphere of the convex hull of a subset of the vertices of the polyhedron.. In ''De ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simple Polyhedron
In geometry, a -dimensional simple polytope is a -dimensional polytope each of whose vertices are adjacent to exactly edges (also facets). The vertex figure of a simple -polytope is a -simplex. Simple polytopes are topologically dual to simplicial polytopes. The family of polytopes which are both simple and simplicial are simplices or two-dimensional polygons. A ''simple polyhedron'' is a three-dimensional polyhedron whose vertices are adjacent to three edges and three faces. The dual to a simple polyhedron is a ''simplicial polyhedron'', in which all faces are triangles. Examples Three-dimensional simple polyhedra include the prisms (including the cube), the regular tetrahedron and dodecahedron, and, among the Archimedean solids, the truncated tetrahedron, truncated cube, truncated octahedron, truncated cuboctahedron, truncated dodecahedron, truncated icosahedron, and truncated icosidodecahedron. They also include the Goldberg polyhedron and Fullerenes, including the ch ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Platonic Solids
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra: Geometers have studied the Platonic solids for thousands of years. They are named for the ancient Greek philosopher Plato who hypothesized in one of his dialogues, the ''Timaeus'', that the classical elements were made of these regular solids. History The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ideal Polyhedron
In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull of a finite set of ideal points. An ideal polyhedron has ideal polygons as its faces, meeting along lines of the hyperbolic space. The Platonic solids and Archimedean solids have ideal versions, with the same combinatorial structure as their more familiar Euclidean versions. Several uniform hyperbolic honeycombs divide hyperbolic space into cells of these shapes, much like the familiar division of Euclidean space into cubes. However, not all polyhedra can be represented as ideal polyhedra – a polyhedron can be ideal only when it can be represented in Euclidean geometry with all its vertices on a circumscribed sphere. Using linear programming, it is possible to test whether a given polyhedron has an ideal version, in polynomial time. Eve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Space
In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of \mathbb R^n with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane. It is also sometimes referred to as Lobachevsky space or Bolyai–Lobachevsky space after the names of the author who first published on the topic of hyperbolic geometry. Sometimes the qualificative "real" is added to differentiate it from complex hyperbolic spaces, quaternionic hyperbolic spaces and the octononic hyperbolic plane which are the other symmetric spaces of negative curvature. Hyperbolic space serves as the prototype of a Gromov hyperbolic space which is a far-reachin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Polytopes (book)
''Regular Polytopes'' is a geometry book on regular polytopes written by Harold Scott MacDonald Coxeter. It was originally published by Methuen in 1947 and by Pitman Publishing in 1948, with a second edition published by Macmillan in 1963 and a third edition by Dover Publications in 1973. The Basic Library List Committee of the Mathematical Association of America has recommended that it be included in undergraduate mathematics libraries. Overview The main topics of the book are the Platonic solids (regular convex polyhedra), related polyhedra, and their higher-dimensional generalizations. It has 14 chapters, along with multiple appendices, providing a more complete treatment of the subject than any earlier work, and incorporating material from 18 of Coxeter's own previous papers. It includes many figures (both photographs of models by Paul Donchian and drawings), tables of numerical values, and historical remarks on the subject. The first chapter discusses regular polygons, regula ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Concentric Spheres
The cosmological model of concentric (or homocentric) spheres, developed by Eudoxus, Callippus, and Aristotle, employed celestial spheres all centered on the Earth. In this respect, it differed from the epicyclic and eccentric models with multiple centers, which were used by Ptolemy and other mathematical astronomers until the time of Copernicus. Origins of the concept of concentric spheres Eudoxus of Cnidus was the first astronomer to develop the concept of concentric spheres. He was originally a student at Plato's academy and is believed to have been influenced by the cosmological speculations of Plato and Pythagoras."Eudoxus of Cnidus." Complete Dictionary of Scientific Biography. Vol. 4. Detroit: Charles Scribner's Sons, 2008. 465–467. Gale Virtual Reference Library. Web. 2 June 2014. He came up with the idea of homocentric spheres in order to explain the perceived inconsistent motions of the planets and to develop a uniform model for accurately calculating the movement of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inscribed Sphere
In geometry, the inscribed sphere or insphere of a convex polyhedron is a sphere that is contained within the polyhedron and tangent to each of the polyhedron's faces. It is the largest sphere that is contained wholly within the polyhedron, and is dual to the dual polyhedron's circumsphere. The radius of the sphere inscribed in a polyhedron ''P'' is called the inradius of ''P''. Interpretations All regular polyhedra have inscribed spheres, but most irregular polyhedra do not have all facets tangent to a common sphere, although it is still possible to define the largest contained sphere for such shapes. For such cases, the notion of an insphere does not seem to have been properly defined and various interpretations of an ''insphere'' are to be found: * The sphere tangent to all faces (if one exists). * The sphere tangent to all face planes (if one exists). * The sphere tangent to a given set of faces (if one exists). * The largest sphere that can fit inside the polyhedron. Often ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Midsphere
In geometry, the midsphere or intersphere of a polyhedron In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ... is a sphere which is tangent to every Edge (geometry), edge of the polyhedron. That is to say, it touches any given edge at exactly one point. Not every polyhedron has a midsphere, but for every convex polyhedron there is a combinatorially equivalent polyhedron, the canonical polyhedron, that does have a midsphere. The radius of the midsphere is called the midradius. Examples The uniform polyhedron, uniform polyhedra, including the regular polyhedron, regular, Quasiregular polyhedron, quasiregular and Semiregular polyhedron, semiregular polyhedra and their Dual polyhedron, duals all have midspheres. In the regular polyhedra, the inscribed sphere, midsphere, and circumscribe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Time
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bounding Sphere
In mathematics, given a non-empty set of objects of finite extension in d-dimensional space, for example a set of points, a bounding sphere, enclosing sphere or enclosing ball for that set is an d-dimensional solid sphere containing all of these objects. Used in computer graphics and computational geometry, a bounding sphere is a special type of bounding volume. There are several fast and simple bounding sphere construction algorithms with a high practical value in real-time computer graphics applications. In statistics and operations research, the objects are typically points, and generally the sphere of interest is the minimal bounding sphere, that is, the sphere with minimal radius among all bounding spheres. It may be proven that such a sphere is unique: If there are two of them, then the objects in question lie within their intersection. But an intersection of two non-coinciding spheres of equal radius is contained in a sphere of smaller radius. The problem of computing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Polyhedra
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex. A regular polyhedron is identified by its Schläfli symbol of the form , where ''n'' is the number of sides of each face and ''m'' the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In addition, there are five regular compounds of the regular polyhedra. The regular polyhedra There are five convex regular polyhedra, known as the Platonic solids, four regular star polyhedra, the Kepler–Poinsot polyhedra, and five regular compounds ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |