HOME
*





Circular Segment
In geometry, a circular segment (symbol: ), also known as a disk segment, is a region of a disk which is "cut off" from the rest of the disk by a secant or a chord. More formally, a circular segment is a region of two-dimensional space that is bounded by a circular arc (of less than π radians by convention) and by the circular chord connecting the endpoints of the arc. Formulae Let ''R'' be the radius of the arc which forms part of the perimeter of the segment, ''θ'' the central angle subtending the arc in radians, ''c'' the chord length, ''s'' the arc length, ''h'' the sagitta (height) of the segment, ''d'' the apothem of the segment, and ''a'' the area of the segment. Usually, chord length and height are given or measured, and sometimes the arc length as part of the perimeter, and the unknowns are area and sometimes arc length. These can't be calculated simply from chord length and height, so two intermediate quantities, the radius and central angle are usually calcula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sagitta (geometry)
In geometry, the sagitta (sometimes abbreviated as sag) of a circular arc is the distance from the center of the arc to the center of its base. It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror or lens. The name comes directly from Latin ''sagitta'', meaning an arrow. Formulae In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As and are two sides of a right triangle with as the hypotenuse, the Pythagorean theorem gives us : r^2 = \left(\frac\right)^2 + \left(r-s\right)^2. This may be rearranged to give any of the other three: : \begin s &= r - \sqrt, \\ pxl &= 2\sqrt, \\ pxr &= \frac = \frac+\frac. \end The sagitta may also be calculated from the versine function, for an arc that spans an angle of , and coincides wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Cap
In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere (forming a great circle), so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a ''hemisphere''. Volume and surface area The volume of the spherical cap and the area of the curved surface may be calculated using combinations of * The radius r of the sphere * The radius a of the base of the cap * The height h of the cap * The polar angle \theta between the rays from the center of the sphere to the apex of the cap (the pole) and the edge of the disk forming the base of the cap If \phi denotes the latitude in geographic coordinates, then \theta+\phi = \pi/2 = 90^\circ\,, and \cos \theta = \sin \phi. The relationship between h and r is relevant as long as 0\le h\le2r. For example, the red section of the illu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chord (geometry)
A chord of a circle is a straight line segment whose endpoints both lie on a circular arc. The infinite line extension of a chord is a secant line, or just ''secant''. More generally, a chord is a line segment joining two points on any curve, for instance, an ellipse. A chord that passes through a circle's center point is the circle's diameter. The word ''chord'' is from the Latin ''chorda'' meaning '' bowstring''. In circles Among properties of chords of a circle are the following: # Chords are equidistant from the center if and only if their lengths are equal. # Equal chords are subtended by equal angles from the center of the circle. # A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. # If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem). In conics The midpoints of a set of parallel chords of a coni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transcendental Function
In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed algebraically. Examples of transcendental functions include the exponential function, the logarithm, and the trigonometric functions. Definition Formally, an analytic function ''f''(''z'') of one real or complex variable ''z'' is transcendental if it is algebraically independent of that variable. This can be extended to functions of several variables. History The transcendental functions sine and cosine were tabulated from physical measurements in antiquity, as evidenced in Greece (Hipparchus) and India ( jya and koti-jya). In describing Ptolemy's table of chords, an equivalent to a table of sines, Olaf Pedersen wrote: A revolutionary understanding of these circular functions occurred in the 17th century and was explicated by Leonhard ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circular Sector
A circular sector, also known as circle sector or disk sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, where the smaller area is known as the ''minor sector'' and the larger being the ''major sector''. In the diagram, is the central angle, r the radius of the circle, and L is the arc length of the minor sector. The angle formed by connecting the endpoints of the arc to any point on the circumference that is not in the sector is equal to half the central angle. Types A sector with the central angle of 180° is called a '' half-disk'' and is bounded by a diameter and a semicircle. Sectors with other central angles are sometimes given special names, such as quadrants (90°), sextants (60°), and octants (45°), which come from the sector being one 4th, 6th or 8th part of a full circle, respectively. Confusingly, the arc of a quadrant (a circular arc) can also be termed a quadrant. Compass Traditionally wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sagitta (geometry)
In geometry, the sagitta (sometimes abbreviated as sag) of a circular arc is the distance from the center of the arc to the center of its base. It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror or lens. The name comes directly from Latin ''sagitta'', meaning an arrow. Formulae In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As and are two sides of a right triangle with as the hypotenuse, the Pythagorean theorem gives us : r^2 = \left(\frac\right)^2 + \left(r-s\right)^2. This may be rearranged to give any of the other three: : \begin s &= r - \sqrt, \\ pxl &= 2\sqrt, \\ pxr &= \frac = \frac+\frac. \end The sagitta may also be calculated from the versine function, for an arc that spans an angle of , and coincides wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Area
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape A shape or figure is a graphics, graphical representation of an object or its external boundary, outline, or external Surface (mathematics), surface, as opposed to other properties such as color, Surface texture, texture, or material type. A pl ... or planar lamina, while ''surface area'' refers to the area of an open surface or the boundary (mathematics), boundary of a solid geometry, three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a plane curve, curve (a one-dimensional concept) or the volume of a solid (a three-dimensional concept). The area of a shape can be measured by com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Apothem
The apothem (sometimes abbreviated as apo) of a regular polygon is a line segment from the center to the midpoint of one of its sides. Equivalently, it is the line drawn from the center of the polygon that is perpendicular to one of its sides. The word "apothem" can also refer to the length of that line segment and come from the ancient Greek ''ἀπόθεμα'' ("put away, put aside"), made of ''ἀπό'' ("off, away") and ''θέμα'' ("that which is laid down"), indicating a generic line written down. Regular polygons are the only polygons that have apothems. Because of this, all the apothems in a polygon will be congruence (geometry), congruent. For a regular pyramid (geometry), pyramid, which is a pyramid whose base is a regular polygon, the apothem is the slant height of a lateral face; that is, the shortest distance from apex to base on a given face. For a truncated regular pyramid (a regular pyramid with some of its peak removed by a plane (geometry), plane parallel to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Height
Height is measure of vertical distance, either vertical extent (how "tall" something or someone is) or vertical position (how "high" a point is). For example, "The height of that building is 50 m" or "The height of an airplane in-flight is about 10,000 m". For example, "Christopher Columbus is 5 foot 2 inches in vertical height." When the term is used to describe vertical position (of, e.g., an airplane) from sea level, height is more often called ''altitude''. Furthermore, if the point is attached to the Earth (e.g., a mountain peak), then altitude (height above sea level) is called ''elevation''. In a two-dimensional Cartesian space, height is measured along the vertical axis (''y'') between a specific point and another that does not have the same ''y''-value. If both points happen to have the same ''y''-value, then their relative height is zero. In the case of three-dimensional space, height is measured along the vertical ''z'' axis, describing a distance from (or "above") t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Arc Length
ARC may refer to: Business * Aircraft Radio Corporation, a major avionics manufacturer from the 1920s to the '50s * Airlines Reporting Corporation, an airline-owned company that provides ticket distribution, reporting, and settlement services * Airport Regions Conference, a European organization of major airports * Amalgamated Roadstone Corporation, a British stone quarrying company * American Record Company (1904–1908, re-activated 1979), one of two United States record labels by this name * American Record Corporation (1929–1938), a United States record label also known as American Record Company * ARC (American Recording Company) (1978-present), a vanity label for Earth, Wind & Fire * ARC Document Solutions, a company based in California, formerly American Reprographics Company * Amey Roadstone Construction, a former British construction company * Aqaba Railway Corporation, a freight railway in Jordan * ARC/Architectural Resources Cambridge, Inc., Cambridge, Massachusett ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]