HOME

TheInfoList



OR:

A chord of a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is con ...
is a straight line segment whose endpoints both lie on a
circular arc Circular may refer to: * The shape of a circle * ''Circular'' (album), a 2006 album by Spanish singer Vega * Circular letter (disambiguation) ** Flyer (pamphlet), a form of advertisement * Circular reasoning, a type of logical fallacy * Circular ...
. The infinite line extension of a chord is a
secant line Secant is a term in mathematics derived from the Latin ''secare'' ("to cut"). It may refer to: * a secant line, in geometry * the secant variety, in algebraic geometry * secant (trigonometry) (Latin: secans), the multiplicative inverse (or recipr ...
, or just ''secant''. More generally, a chord is a line segment joining two points on any curve, for instance, an ellipse. A chord that passes through a circle's center point is the circle's
diameter In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid fo ...
. The word ''chord'' is from the Latin ''chorda'' meaning '' bowstring''.


In circles

Among properties of chords of a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is con ...
are the following: # Chords are equidistant from the center if and only if their lengths are equal. # Equal chords are subtended by equal angles from the center of the circle. # A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. # If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (
power of a point theorem In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826. Specifically, the power \Pi(P) of a point P with respect to ...
).


In conics

The midpoints of a set of parallel chords of a
conic In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a specia ...
are
collinear In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned o ...
( midpoint theorem for conics).


In trigonometry

Chords were used extensively in the early development of
trigonometry Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies ...
. The first known trigonometric table, compiled by
Hipparchus Hipparchus (; el, Ἵππαρχος, ''Hipparkhos'';  BC) was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equi ...
, tabulated the value of the chord function for every
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathematics ...
s. In the second century AD,
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importanc ...
of Alexandria compiled a more extensive table of chords in his book on astronomy, giving the value of the chord for angles ranging from to 180 degrees by increments of degree. The circle was of diameter 120, and the chord lengths are accurate to two base-60 digits after the integer part. The chord function is defined geometrically as shown in the picture. The chord of an
angle In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle. Angles formed by two ...
is the
length Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Interna ...
of the chord between two points on a unit circle separated by that central angle. The angle ''θ'' is taken in the positive sense and must lie in the interval (radian measure). The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (), and then using the
Pythagorean theorem In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite t ...
to calculate the chord length: : \operatorname\ \theta = \sqrt = \sqrt =2 \sin \left(\frac\right). The last step uses the
half-angle formula In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involvin ...
. Much as modern trigonometry is built on the sine function, ancient trigonometry was built on the chord function. Hipparchus is purported to have written a twelve-volume work on chords, all now lost, so presumably, a great deal was known about them. In the table below (where ''c'' is the chord length, and ''D'' the diameter of the circle) the chord function can be shown to satisfy many identities analogous to well-known modern ones: The inverse function exists as well: :\theta = 2\arcsin\frac


See also

*
Circular segment In geometry, a circular segment (symbol: ), also known as a disk segment, is a region of a disk which is "cut off" from the rest of the disk by a secant or a chord. More formally, a circular segment is a region of two-dimensional space that is ...
- the part of the sector that remains after removing the triangle formed by the center of the circle and the two endpoints of the circular arc on the boundary. *
Scale of chords A scale of chords may be used to set or read an angle in the absence of a protractor. To draw an angle, compasses describe an arc from origin with a radius taken from the 60 mark. The required angle is copied from the scale by the compasses, and an ...
*
Ptolemy's table of chords The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's ''Almagest'', a treatise on mathematical astronomy. It ...
*
Holditch's theorem In plane geometry, Holditch's theorem states that if a chord of fixed length is allowed to rotate inside a convex closed curve, then the locus of a point on the chord a distance ''p'' from one end and a distance ''q'' from the other is a closed ...
, for a chord rotating in a convex closed curve * Circle graph *
Exsecant and excosecant The exsecant (exsec, exs) and excosecant (excosec, excsc, exc) are trigonometric functions defined in terms of the secant and cosecant functions. They used to be important in fields such as surveying, railway engineering, civil engineering, astro ...
*
Versine and haversine The versine or versed sine is a trigonometric function found in some of the earliest (Sanskrit ''Aryabhatia'',Zindler curve (closed and simple curve in which all chords that divide the arc length into halves have the same length)


References


Further reading


External links


History of Trigonometry Outline


, focusing on history

With interactive animation {{Authority control Circles Curves Geometry