Circular Order
In mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation , meaning "after , one reaches before ". For example, une, October, February but not une, February, October cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected. Dropping the "connected" requirement results in a partial cyclic order. A set with a cyclic order is called a cyclically ordered set or simply a cycle. Some familiar cycles are discrete, having only a finite number of elements: there are seven days of the week, four cardinal directions, twelve notes in the chromatic scale, and three plays in rock-paper-scissors. In a finite cycle, each element has a "next element" and a "previous element". There are also continuou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Line (geometry)
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segment in everyday life, which has two points to denote its ends. Lines can be referred by two points that lay on it (e.g., \overleftrightarrow) or by a single letter (e.g., \ell). Euclid described a line as "breadthless length" which "lies evenly with respect to the points on itself"; he introduced several postulates as basic unprovable properties from which he constructed all of geometry, which is now called Euclidean geometry to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as non-Euclidean, projective and affine geometry). In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in analytic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rewriting
In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a well-formed formula, formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduction systems). In their most basic form, they consist of a set of objects, plus relations on how to transform those objects. Rewriting can be non-deterministic algorithm, non-deterministic. One rule to rewrite a term could be applied in many different ways to that term, or more than one rule could be applicable. Rewriting systems then do not provide an algorithm for changing one term to another, but a set of possible rule applications. When combined with an appropriate algorithm, however, rewrite systems can be viewed as computer programs, and several automated theorem proving, theorem provers and declarative programming languages are based on term rewriting. Example cases Logic In logic, the procedure for obtaini ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Group
In mathematics, the free group ''F''''S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''−1''t'', but ''s'' ≠ ''t''−1 for ''s'',''t'',''u'' ∈ ''S''). The members of ''S'' are called generators of ''F''''S'', and the number of generators is the rank of the free group. An arbitrary group ''G'' is called free if it is isomorphic to ''F''''S'' for some subset ''S'' of ''G'', that is, if there is a subset ''S'' of ''G'' such that every element of ''G'' can be written in exactly one way as a product of finitely many elements of ''S'' and their inverses (disregarding trivial variations such as ''st'' = ''suu''−1''t''). A related but different notion is a free abelian group; both notions are particular instances of a free object from universal algebra. As such, free groups are defined by their universal property. History Free ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjugacy Class
In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under b = gag^. for all elements g in the group. Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure. For an abelian group, each conjugacy class is a set containing one element (singleton set). Functions that are constant for members of the same conjugacy class are called class functions. Definition Let G be a group. Two elements a, b \in G are conjugate if there exists an element g \in G such that gag^ = b, in which case b is called of a and a is called a conjugate of b. In the case of the general linear group \operatorna ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monomial
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called power product, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, x^2yz^3=xxyzzz is a monomial. The constant 1 is a monomial, being equal to the empty product and to x^0 for any variable x. If only a single variable x is considered, this means that a monomial is either 1 or a power x^n of x, with n a positive integer. If several variables are considered, say, x, y, z, then each can be given an exponent, so that any monomial is of the form x^a y^b z^c with a,b,c non-negative integers (taking note that any exponent 0 makes the corresponding factor equal to 1). # A monomial is a monomial in the first sense multiplied by a nonzero constant, called the coefficient of the monomial. A monomial in the first sense is a special c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Function
In mathematics, a function of n variables is symmetric if its value is the same no matter the order of its arguments. For example, a function f\left(x_1,x_2\right) of two arguments is a symmetric function if and only if f\left(x_1,x_2\right) = f\left(x_2,x_1\right) for all x_1 and x_2 such that \left(x_1,x_2\right) and \left(x_2,x_1\right) are in the domain of f. The most commonly encountered symmetric functions are polynomial functions, which are given by the symmetric polynomials. A related notion is alternating polynomials, which change sign under an interchange of variables. Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric k-tensors on a vector space V is isomorphic to the space of homogeneous polynomials of degree k on V. Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry. Symmetrization Given any function f in n variables wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Directed Cycle Graph
In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with vertices is called . The number of vertices in equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it. Terminology There are many synonyms for "cycle graph". These include simple cycle graph and cyclic graph, although the latter term is less often used, because it can also refer to graphs which are merely not acyclic. Among graph theorists, cycle, polygon, or ''n''-gon are also often used. The term ''n''-cycle is sometimes used in other settings. A cycle with an even number of vertices is called an even cycle; a cycle with an odd number of vertices is called an odd cycle. Properties A cycle graph is: * 2-edge colorable, if and only if it has an even number of vertices * 2-regular * 2-ve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Torsor
In mathematics, a principal homogeneous space, or torsor, for a group ''G'' is a homogeneous space ''X'' for ''G'' in which the stabilizer subgroup of every point is trivial. Equivalently, a principal homogeneous space for a group ''G'' is a non-empty set ''X'' on which ''G'' acts freely and transitively (meaning that, for any ''x'', ''y'' in ''X'', there exists a unique ''g'' in ''G'' such that , where · denotes the (right) action of ''G'' on ''X''). An analogous definition holds in other categories, where, for example, *''G'' is a topological group, ''X'' is a topological space and the action is continuous, *''G'' is a Lie group, ''X'' is a smooth manifold and the action is smooth, *''G'' is an algebraic group, ''X'' is an algebraic variety and the action is regular. Definition If ''G'' is nonabelian then one must distinguish between left and right torsors according to whether the action is on the left or right. In this article, we will use right actions. To state the defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cycles And Fixed Points
In mathematics, the cycles of a permutation ''π'' of a finite set S correspond bijectively to the orbits of the subgroup generated by ''π'' acting on ''S''. These orbits are subsets of S that can be written as , such that : for , and . The corresponding cycle of ''π'' is written as ( ''c''1 ''c''2 ... ''c''''n'' ); this expression is not unique since ''c''1 can be chosen to be any element of the orbit. The size of the orbit is called the length of the corresponding cycle; when , the single element in the orbit is called a fixed point of the permutation. A permutation is determined by giving an expression for each of its cycles, and one notation for permutations consist of writing such expressions one after another in some order. For example, let : \pi = \begin 1 & 6 & 7 & 2 & 5 & 4 & 8 & 3 \\ 2 & 8 & 7 & 4 & 5 & 3 & 6 & 1 \end = \begin 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 1 & 3 & 5 & 8 & 7 & 6 \end be a permutation that maps 1 to 2, 6 to 8, etc. Then one may wri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set , namely (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). These are all the possible orderings of this three-element set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory. Permutations are used in almost every branch of mathematics, and in many other fields of scie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |