HOME
*





Chow Ring
In algebraic geometry, the Chow groups (named after Wei-Liang Chow by ) of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties (so-called algebraic cycles) in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups (compare Poincaré duality) and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general. Rational equivalence and Chow groups For what follows, define a variety over a field k to be an integral scheme of finite type over k. For any scheme X of finite type over k, an algebraic cycle on X means a finite linear combination of subvarieties of X with integer coefficients. (Here and below, subvarieties are understood to b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divisor (algebraic Geometry)
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-''r'' subvariety need not be definable by only ''r'' equations when ''r'' is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvarieties ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert MacPherson (mathematician)
Robert Duncan MacPherson (born May 25, 1944) is an American mathematician at the Institute for Advanced Study and Princeton University. He is best known for the invention of intersection homology with Mark Goresky, whose thesis he directed at Brown University, and who became his life partner. MacPherson previously taught at Brown University, the University of Paris, and the Massachusetts Institute of Technology. In 1983 he gave a plenary address at the International Congress of Mathematicians in Warsaw. Education and career Educated at Swarthmore College and Harvard University, MacPherson received his PhD from Harvard in 1970. His thesis, written under the direction of Raoul Bott, was entitled ''Singularities of Maps and Characteristic Classes''. Among his many PhD students are Kari Vilonen and Mark Goresky. Honors and awards In 1992, MacPherson was awarded the NAS Award in Mathematics from the National Academy of Sciences. In 2002 he and Goresky were awarded the Leroy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


William Fulton (mathematician)
William Edgar Fulton (born August 29, 1939) is an American mathematician, specializing in algebraic geometry. Education and career He received his undergraduate degree from Brown University in 1961 and his doctorate from Princeton University in 1966. His Ph.D. thesis, written under the supervision of Gerard Washnitzer, was on ''The fundamental group of an algebraic curve''. Fulton worked at Princeton and Brandeis University from 1965 until 1970, when he began teaching at Brown. In 1987 he moved to the University of Chicago.Announcement of the
1996 Steele Prizes at the American Mathematical Society web site, accessed July 15, 2009.
He is, as of 2011, a professor at the University of Michigan. Fulton is known as the author or coauthor of a number of popular texts, including ''Algebraic Curves'' and ''Representation Theory'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intersection Number
In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem. The intersection number is obvious in certain cases, such as the intersection of ''x''- and ''y''-axes which should be one. The complexity enters when calculating intersections at points of tangency and intersections along positive dimensional sets. For example, if a plane is tangent to a surface along a line, the intersection number along the line should be at least two. These questions are discussed systematically in intersection theory. Definition for Riemann surfaces Let ''X'' be a Riemann surface. Then the intersection number of two closed curves on ''X'' has a simple definition in terms of an integral. For every closed curve '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Intersection Theory
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks. Topological intersection form For a connected oriented manifold of dimension the intersection form is defined on the -th cohomology group (what is usually called the 'middle dimension') by the evaluation of the cup product on the fundamental class in . Stated precisely, there is a bilinear form :\lambda_M \colon H^n(M,\partial M) \times H^n(M,\partial M)\to \mathbf given by :\lambda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transversality (mathematics)
In mathematics, transversality is a notion that describes how spaces can intersect; transversality can be seen as the "opposite" of tangency, and plays a role in general position. It formalizes the idea of a generic intersection in differential topology. It is defined by considering the linearizations of the intersecting spaces at the points of intersection. Definition Two submanifolds of a given finite-dimensional smooth manifold are said to intersect transversally if at every point of intersection, their separate tangent spaces at that point together generate the tangent space of the ambient manifold at that point. Manifolds that do not intersect are vacuously transverse. If the manifolds are of complementary dimension (i.e., their dimensions add up to the dimension of the ambient space), the condition means that the tangent space to the ambient manifold is the direct sum of the two smaller tangent spaces. If an intersection is transverse, then the intersection will be a su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graded Ring
In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that R_i R_j \subseteq R_. The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading. A graded module is defined similarly (see below for the precise definition). It generalizes graded vector spaces. A graded module that is also a graded ring is called a graded algebra. A graded ring could also be viewed as a graded \Z-algebra. The associativity is not important (in fact not used at all) in the definition of a graded ring; hence, the notion applies to non-associative algebras as well; e.g., one can consider a graded Lie algebra. First properties Generally, the index set of a graded ring is assumed to be the set of nonnegative integers, unless otherwise explicitly specified. This is the case in this article. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Codimension
In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals the height of the defining ideal. For this reason, the height of an ideal is often called its codimension. The dual concept is relative dimension. Definition Codimension is a ''relative'' concept: it is only defined for one object ''inside'' another. There is no “codimension of a vector space (in isolation)”, only the codimension of a vector ''sub''space. If ''W'' is a linear subspace of a finite-dimensional vector space ''V'', then the codimension of ''W'' in ''V'' is the difference between the dimensions: :\operatorname(W) = \dim(V) - \dim(W). It is the complement of the dimension of ''W,'' in that, with the dimension of ''W,'' it adds up to the dimension of the ambient space ''V:'' :\dim(W) + \operatorname(W) = \dim(V). Similarly, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result) has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Invertible Sheaf
In mathematics, an invertible sheaf is a coherent sheaf ''S'' on a ringed space ''X'', for which there is an inverse ''T'' with respect to tensor product of ''O''''X''-modules. It is the equivalent in algebraic geometry of the topological notion of a line bundle. Due to their interactions with Cartier divisors, they play a central role in the study of algebraic varieties. Definition An invertible sheaf is a locally free sheaf ''S'' on a ringed space ''X'', for which there is an inverse ''T'' with respect to tensor product of ''O''''X''-modules, that is, we have :S \otimes T\ isomorphic to ''O''''X'', which acts as identity element for the tensor product. The most significant cases are those coming from algebraic geometry and complex geometry. For spaces such as (locally) Noetherian schemes or complex manifolds, one can actually replace 'locally free' by 'coherent' in the definition. The invertible sheaves in those theories are in effect the line bundles appropriately formulat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]