HOME
*





Choquet Game
The Choquet game is a topological game named after Gustave Choquet, who was in 1969 the first to investigate such games. A closely related game is known as the strong Choquet game. Let X be a non-empty topological space. The Choquet game of X, G(X), is defined as follows: Player I chooses U_0, a non-empty open subset of X, then Player II chooses V_0, a non-empty open subset of U_0, then Player I chooses U_1, a non-empty open subset of V_0, etc. The players continue this process, constructing a sequence U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq U_2 ... If \bigcap\limits_^ U_i = \emptyset then Player I wins, otherwise Player II wins. It was proved by John C. Oxtoby that a non-empty topological space X is a Baire space if and only if Player I has no winning strategy. A nonempty topological space X in which Player II has a winning strategy is called a Choquet space. (Note that it is possible that neither player has a winning strategy.) Thus every Choquet space is Baire ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Game
In mathematics, a topological game is an infinite game of perfect information played between two players on a topological space. Players choose objects with topological properties such as points, open sets, closed sets and open coverings. Time is generally discrete, but the plays may have transfinite lengths, and extensions to continuum time have been put forth. The conditions for a player to win can involve notions like topological closure and convergence. It turns out that some fundamental topological constructions have a natural counterpart in topological games; examples of these are the Baire property, Baire spaces, completeness and convergence properties, separation properties, covering and base properties, continuous images, Suslin sets, and singular spaces. At the same time, some topological properties that arise naturally in topological games can be generalized beyond a game-theoretic context: by virtue of this duality, topological games have been widely used to describ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gustave Choquet
Gustave Choquet (; 1 March 1915 – 14 November 2006) was a French mathematician. Choquet was born in Solesmes, Nord. His contributions include work in functional analysis, potential theory, topology and measure theory. He is known for creating the Choquet theory, the Choquet integral and the theory of capacities. He did postgraduate work at the École Normale Supérieure Paris where his advisor was Arnaud Denjoy. He was Professor at the University of Paris (subsequently Paris VI) from 1940 to 1984 and was also Professor at the École Polytechnique from 1960 to 1969. His honours and awards included being a Member of the Académie des Sciences, and an Officier of the Légion d’Honneur. His students include Haïm Brezis, Gilles Godefroy, Nassif Ghoussoub, Michel L. Lapidus, and Michel Talagrand. He was married to mathematician and mathematical physicist Yvonne Choquet-Bruhat, with whom he had a son Daniel and a daughter Geneviève. He died in Lyon in 2006. Bibliograph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Set
In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, one defines open sets as the members of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or no set can be open except the space itself and the empty set (the indiscrete topology). In practice, however, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




John C
John is a common English name and surname: * John (given name) * John (surname) John may also refer to: New Testament Works * Gospel of John, a title often shortened to John * First Epistle of John, often shortened to 1 John * Second Epistle of John, often shortened to 2 John * Third Epistle of John, often shortened to 3 John People * John the Baptist (died c. AD 30), regarded as a prophet and the forerunner of Jesus Christ * John the Apostle (lived c. AD 30), one of the twelve apostles of Jesus * John the Evangelist, assigned author of the Fourth Gospel, once identified with the Apostle * John of Patmos, also known as John the Divine or John the Revelator, the author of the Book of Revelation, once identified with the Apostle * John the Presbyter, a figure either identified with or distinguished from the Apostle, the Evangelist and John of Patmos Other people with the given name Religious figures * John, father of Andrew the Apostle and Saint Peter * Pope Jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baire Space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, analysis, in particular functional analysis. Bourbaki introduced the term "Baire space" in honor of René Baire, who investigated the Baire category theorem in the context of Euclidean space \R^n in his 1899 thesis. Definition The definition that follows is based on the notions of meagre (or first category) set (namely, a set that is a countable union of sets whose closure has empty interior) and nonmeagre (or second category) set (namely, a set that is not meagre). See the corresponding article for details. A topological space X is called a Baire space if it satisfies any of the follo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable Space
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence \_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset. Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces. First examples Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. An importa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metrizable
In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \mathcal) is said to be metrizable if there is a metric d : X \times X \to , \infty) such that the topology induced by d is \mathcal. Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable. Properties Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff paracompact spaces (and hence normal and Tychonoff) and first-countable. However, some properties of the metric, such as completeness, cannot be said to be inherited. This is also true of other structures linked to the metric. A metrizable uniform space, for example, may have a different set of contraction maps than a metric space to which it is homeomorphic. Metrization theorems One of the first widely recognized metrization theorems was . This states that every H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complete Metric Space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots in a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d\left(x_m, x_n\right) < r. Complete space A metric space (X, d) is complete if any of the following equivalent conditions are satisfied: :#Every

picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gδ Set
In the mathematical field of topology, a Gδ set is a subset of a topological space that is a countable intersection of open sets. The notation originated in German with ''G'' for '' Gebiet'' (''German'': area, or neighbourhood) meaning open set in this case and for '' Durchschnitt'' (''German'': intersection).. Historically Gδ sets were also called inner limiting sets, but that terminology is not in use anymore. Gδ sets, and their dual, F sets, are the second level of the Borel hierarchy. Definition In a topological space a Gδ set is a countable intersection of open sets. The Gδ sets are exactly the level Π sets of the Borel hierarchy. Examples * Any open set is trivially a Gδ set. * The irrational numbers are a Gδ set in the real numbers \R. They can be written as the countable intersection of the open sets \^ (the superscript denoting the complement) where q is rational. * The set of rational numbers \Q is a Gδ set in \R. If \Q were the intersection of open set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]