HOME
*





Chebyshev Rational Functions
In mathematics, the Chebyshev rational functions are a sequence of functions which are both rational and orthogonal. They are named after Pafnuty Chebyshev. A rational Chebyshev function of degree is defined as: :R_n(x)\ \stackrel\ T_n\left(\frac\right) where is a Chebyshev polynomial of the first kind. Properties Many properties can be derived from the properties of the Chebyshev polynomials of the first kind. Other properties are unique to the functions themselves. Recursion :R_(x)=2\,\fracR_n(x)-R_(x) \quad \text n\ge 1 Differential equations :(x+1)^2R_n(x)=\frac\fracR_(x)-\frac\fracR_(x) \quad \text n\ge 2 :(x+1)^2x\fracR_n(x)+\frac\fracR_n(x)+n^2R_(x) = 0 Orthogonality Defining: :\omega(x) \ \stackrel\ \frac The orthogonality of the Chebyshev rational functions may be written: :\int_^\infty R_m(x)\,R_n(x)\,\omega(x)\,\mathrmx=\frac\delta_ where for and for ; is the Kronecker delta In mathematics, the Kronecker delta (named after Leopold Krone ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Filter
An elliptic filter (also known as a Cauer filter, named after Wilhelm Cauer, or as a Zolotarev filter, after Yegor Zolotarev) is a signal processing filter with equalized ripple (equiripple) behavior in both the passband and the stopband. The amount of ripple in each band is independently adjustable, and no other filter of equal order can have a faster transition in gain between the passband and the stopband, for the given values of ripple (whether the ripple is equalized or not). Alternatively, one may give up the ability to adjust independently the passband and stopband ripple, and instead design a filter which is maximally insensitive to component variations. As the ripple in the stopband approaches zero, the filter becomes a type I Chebyshev filter. As the ripple in the passband approaches zero, the filter becomes a type II Chebyshev filter and finally, as both ripple values approach zero, the filter becomes a Butterworth filter. The gain of a lowpass elliptic filter as a f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Functions
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field ''K''. In this case, one speaks of a rational function and a rational fraction ''over K''. The values of the variables may be taken in any field ''L'' containing ''K''. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is ''L''. The set of rational functions over a field ''K'' is a field, the field of fractions of the ring of the polynomial functions over ''K''. Definitions A function f(x) is called a rational function if and only if it can be written in the form : f(x) = \frac where P\, and Q\, are polynomial functions of x\, and Q\, is not the zero function. The domain of f\, is the set of all values of x\, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orthogonal Functions
In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form. When the function space has an interval (mathematics), interval as the domain of a function, domain, the bilinear form may be the integral of the product of functions over the interval: : \langle f,g\rangle = \int \overlineg(x)\,dx . The functions f and g are bilinear form#Reflexivity and orthogonality, orthogonal when this integral is zero, i.e. \langle f, \, g \rangle = 0 whenever f \neq g. As with a basis (linear algebra), basis of vectors in a finite-dimensional space, orthogonal functions can form an infinite basis for a function space. Conceptually, the above integral is the equivalent of a vector dot-product; two vectors are mutually independent (orthogonal) if their dot-product is zero. Suppose \ is a sequence of orthogonal functions of nonzero L2-norm, ''L''2-norms \left\, f_n \right\, _2 = \sqrt = \left(\int f_n ^2 \ dx \right) ^\frac . It follows th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pafnuty Chebyshev
Pafnuty Lvovich Chebyshev ( rus, Пафну́тий Льво́вич Чебышёв, p=pɐfˈnutʲɪj ˈlʲvovʲɪtɕ tɕɪbɨˈʂof) ( – ) was a Russian mathematician and considered to be the founding father of Russian mathematics. Chebyshev is known for his fundamental contributions to the fields of probability, statistics, mechanics, and number theory. A number of important mathematical concepts are named after him, including the Chebyshev inequality (which can be used to prove the weak law of large numbers), the Bertrand–Chebyshev theorem, Chebyshev polynomials, Chebyshev linkage, and Chebyshev bias. Transcription The surname Chebyshev has been transliterated in several different ways, like Tchebichef, Tchebychev, Tchebycheff, Tschebyschev, Tschebyschef, Tschebyscheff, Čebyčev, Čebyšev, Chebysheff, Chebychov, Chebyshov (according to native Russian speakers, this one provides the closest pronunciation in English to the correct pronunciation in old Russian), and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chebyshev Polynomial
The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as T_n(x) and U_n(x). They can be defined in several equivalent ways, one of which starts with trigonometric functions: The Chebyshev polynomials of the first kind T_n are defined by : T_n(\cos \theta) = \cos(n\theta). Similarly, the Chebyshev polynomials of the second kind U_n are defined by : U_n(\cos \theta) \sin \theta = \sin\big((n + 1)\theta\big). That these expressions define polynomials in \cos\theta may not be obvious at first sight, but follows by rewriting \cos(n\theta) and \sin\big((n+1)\theta\big) using de Moivre's formula or by using the angle sum formulas for \cos and \sin repeatedly. For example, the double angle formulas, which follow directly from the angle sum formulas, may be used to obtain T_2(\cos\theta)=\cos(2\theta)=2\cos^2\theta-1 and U_1(\cos\theta)\sin\theta=\sin(2\theta)=2\cos\theta\sin\theta, which are respectively a polynomial in \cos\th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kronecker Delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\text i=j. \end or with use of Iverson brackets: \delta_ = =j, where the Kronecker delta is a piecewise function of variables and . For example, , whereas . The Kronecker delta appears naturally in many areas of mathematics, physics and engineering, as a means of compactly expressing its definition above. In linear algebra, the identity matrix has entries equal to the Kronecker delta: I_ = \delta_ where and take the values , and the inner product of vectors can be written as \mathbf\cdot\mathbf = \sum_^n a_\delta_b_ = \sum_^n a_ b_. Here the Euclidean vectors are defined as -tuples: \mathbf = (a_1, a_2, \dots, a_n) and \mathbf= (b_1, b_2, ..., b_n) and the last step is obtained by using the values of the Kronecker delta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]