Change-making Problem
The change-making problem addresses the question of finding the minimum number of coins (of certain denominations) that add up to a given amount of money. It is a special case of the integer knapsack problem, and has applications wider than just currency. It is also the most common variation of the ''coin change problem'', a general case of partition in which, given the available denominations of an infinite set of coins, the objective is to find out the number of possible ways of making a change for a specific amount of money, without considering the order of the coins. It is weakly NP-hard, but may be solved optimally in pseudo-polynomial time by dynamic programming. Mathematical definition Coin values can be modeled by a set of distinct positive integer values (whole numbers), arranged in increasing order as through . The problem is: given an amount , also a positive integer, to find a set of non-negative (positive or zero) integers , with each representing how often the c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Special Case
In logic, especially as applied in mathematics, concept is a special case or specialization of concept precisely if every instance of is also an instance of but not vice versa, or equivalently, if is a generalization of . A limiting case is a type of special case which is arrived at by taking some aspect of the concept to the extreme of what is permitted in the general case. A degenerate case is a special case which is in some way qualitatively different from almost all of the cases allowed. Special case examples include the following: * All squares are rectangles (but not all rectangles are squares); therefore the square is a special case of the rectangle. * Fermat's Last Theorem, that has no solutions in positive integers with , is a special case of Beal's conjecture, that has no primitive solutions in positive integers with , , and all greater than 2, specifically, the case of {{mvar, x {{= y {{= z. See also * Specialization (logic) Specialization or Specializ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Knapsack Problem
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision-makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively. The knapsack problem has been studied for more than a century, with early works dating as far back as 1897. The name "knapsack problem" dates back to the early works of the mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage. Applications Knapsack problems ap ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partition Problem
In number theory and computer science, the partition problem, or number partitioning, is the task of deciding whether a given multiset ''S'' of positive integers can be partitioned into two subsets ''S''1 and ''S''2 such that the sum of the numbers in ''S''1 equals the sum of the numbers in ''S''2. Although the partition problem is NP-complete, there is a pseudo-polynomial time dynamic programming solution, and there are heuristics that solve the problem in many instances, either optimally or approximately. For this reason, it has been called "the easiest hard problem". There is an optimization version of the partition problem, which is to partition the multiset ''S'' into two subsets ''S''1, ''S''2 such that the difference between the sum of elements in ''S''1 and the sum of elements in ''S''2 is minimized. The optimization version is NP-hard, but can be solved efficiently in practice. The partition problem is a special case of two related problems: * In the subset sum problem, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weak NP-completeness
In computational complexity, an NP-complete (or NP-hard) problem is weakly NP-complete (or weakly NP-hard) if there is an algorithm for the problem whose running time is polynomial in the dimension of the problem and the magnitudes of the data involved (provided these are given as integers), rather than the base-two logarithms of their magnitudes. Such algorithms are technically exponential functions of their input size and are therefore not considered polynomial. For example, the NP-hard knapsack problem can be solved by a dynamic programming algorithm requiring a number of steps polynomial in the size of the knapsack and the number of items (assuming that all data are scaled to be integers); however, the runtime of this algorithm is exponential time since the input sizes of the objects and knapsack are logarithmic in their magnitudes. However, as Garey and Johnson (1979) observed, “A pseudo-polynomial-time algorithm … will display 'exponential behavior' only when confronted wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudo-polynomial Time
In computational complexity theory, a numeric algorithm runs in pseudo-polynomial time if its running time is a polynomial in the ''numeric value'' of the input (the largest integer present in the input)—but not necessarily in the ''length'' of the input (the number of bits required to represent it), which is the case for polynomial time algorithms. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, 1979. In general, the numeric value of the input is exponential in the input length, which is why a pseudo-polynomial time algorithm does not necessarily run in polynomial time with respect to the input length. An NP-complete problem with known pseudo-polynomial time algorithms is called weakly NP-complete. An NP-complete problem is called strongly NP-complete if it is proven that it cannot be solved by a pseudo-polynomial time algorithm unless . The strong/weak kinds of NP-hardness are defined anal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynamic Programming
Dynamic programming is both a mathematical optimization method and a computer programming method. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics. In both contexts it refers to simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner. While some decision problems cannot be taken apart this way, decisions that span several points in time do often break apart recursively. Likewise, in computer science, if a problem can be solved optimally by breaking it into sub-problems and then recursively finding the optimal solutions to the sub-problems, then it is said to have ''optimal substructure''. If sub-problems can be nested recursively inside larger problems, so that dynamic programming methods are applicable, then there is a relation between the value of the larger problem and the values of the sub-problems.Cormen, T. H.; Leiserson, C. E.; Rives ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Introduction To Algorithms
''Introduction to Algorithms'' is a book on computer programming by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The book has been widely used as the textbook for algorithms courses at many universities and is commonly cited as a reference for algorithms in published papers, with over 10,000 citations documented on CiteSeerX. The book sold half a million copies during its first 20 years. Its fame has led to the common use of the abbreviation "CLRS" (Cormen, Leiserson, Rivest, Stein), or, in the first edition, "CLR" (Cormen, Leiserson, Rivest). In the preface, the authors write about how the book was written to be comprehensive and useful in both teaching and professional environments. Each chapter focuses on an algorithm, and discusses its design techniques and areas of application. Instead of using a specific programming language, the algorithms are written in pseudocode. The descriptions focus on the aspects of the algorithm itself, its mathe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nine Dart Finish
A nine-dart finish, also known as a nine-darter, is a perfect leg or single game in the sport of darts. The object of the game is to score a set number of points, most commonly 501; in order to win, a player must reach the target total exactly and hit a double scoring area with their last dart. When the target is 501, the minimum number of darts needed to reach it is nine. For example, one way to achieve a nine-dart finish is to score 60 (triple 20) on each of the first seven throws, then a 57 (triple 19) on the eighth, and lastly a 24 (double 12) on the ninth. It is regarded as an extremely difficult feat to achieve even for the sport's top players, and is considered the highest single-game achievement in the sport, similar to a maximum 147 break in snooker or a 300-point game in bowling. The feat was first achieved on television by John Lowe in 1984, and has since been via this medium a total 64 times. Paul Lim was the first to hit a nine-darter in the World Championship, ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |