Cepheids
A Cepheid variable () is a type of star that Instability strip, pulsates radially, varying in both diameter and temperature and producing changes in brightness with a well-defined stable frequency, period and amplitude. A strong direct period-luminosity relation, relationship between a Cepheid variable's luminosity and periodic function, pulsation period established Cepheids as important Cosmic distance ladder#Galactic distance indicators, indicators of cosmic benchmarks for scaling cosmic distance ladder, galactic and extragalactic distances. This robust characteristic of classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt after studying thousands of variable stars in the Magellanic Clouds. This discovery allows one to know the true luminosity of a Cepheid by simply observing its pulsation period. This in turn allows one to determine the distance to the star, by comparing its known luminosity to its observed brightness. The term ''Cepheid'' originates from Delta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Period-luminosity Relation
In astronomy, a period-luminosity relation is a relationship linking the bolometric luminosity, luminosity of pulsating variable stars with their pulsation period. The best-known relation is the direct proportionality law holding for Classical Cepheid variables, sometimes called the Leavitt law. Discovered in 1908 by Henrietta Swan Leavitt, the relation established Cepheids as foundational Cosmic distance ladder#Galactic distance indicators, indicators of cosmic benchmarks for scaling cosmic distance ladder, galactic and extragalactic distances. The physical model explaining the Leavitt's law for classical cepheids is called ''kappa mechanism''. History Leavitt, a graduate of Radcliffe College, worked at the Harvard College Observatory as a "Human computer, computer", tasked with examining photographic plates in order to measure and catalog the brightness of stars. Observatory Director Edward Charles Pickering assigned Leavitt to the study of variable stars of the Small Magellan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Variable Star
A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: * Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. * Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of the Sun, for example, varies by about 0.1% over an 11-year solar cycle. Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol. Of the modern astronomers, th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cosmic Distance Ladder
The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A ''direct'' distance measurement of an astronomical object is possible only for those objects that are "close enough" (within about a thousand parsecs) to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity. The ladder analogy arises because no single technique can measure distances at all ranges encountered in astronomy. Instead, one method can be used to measure nearby distances, a second can be used to measure nearby to intermediate distances, and so on. Each rung of the ladder provides information that can be used to determine the distances at the next ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cosmic Distance Ladder
The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A ''direct'' distance measurement of an astronomical object is possible only for those objects that are "close enough" (within about a thousand parsecs) to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity. The ladder analogy arises because no single technique can measure distances at all ranges encountered in astronomy. Instead, one method can be used to measure nearby distances, a second can be used to measure nearby to intermediate distances, and so on. Each rung of the ladder provides information that can be used to determine the distances at the next ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stellar Pulsation
Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain equilibrium. These fluctuations in stellar radius cause corresponding changes in the luminosity of the star. Astronomers are able to deduce this mechanism by measuring the spectrum and observing the Doppler effect. Many intrinsic variable stars that pulsate with large amplitudes, such as the classical Cepheids, RR Lyrae stars and large-amplitude Delta Scuti stars show regular light curves. This regular behavior is in contrast with the variability of stars that lie parallel to and to the high-luminosity/low-temperature side of the classical variable stars in the Hertzsprung–Russell diagram. These giant stars are observed to undergo pulsations ranging from weak irregularity, when one can still define an average cycling time or period, (as in most RV Tauri and semiregular variables) to the near absence of repetitiveness in the irregular variables. The W Virginis variables ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henrietta Swan Leavitt
Henrietta Swan Leavitt (; July 4, 1868 – December 12, 1921) was an American astronomer. A graduate of Radcliffe College, she worked at the Harvard College Observatory as a "computer", tasked with examining photographic plates in order to measure and catalog the brightness of stars. This work led her to discover the relation between the luminosity and the period of Cepheid variables. Leavitt's discovery provided astronomers with the first "standard candle" with which to measure the distance to faraway galaxies. Before Leavitt discovered the period-luminosity relationship for Cepheid variables, the only techniques available to astronomers for measuring the distance to a star were based on parallax and triangulation. Such techniques can only be used for measuring distances up to hundreds of light years. Leavitt's work allowed astronomers to measure distances up to about 20 million light years. As a result of this, it is now known that our own galaxy, the Milky Way, has a diamet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eta Aquilae
Eta Aquilae (η Aql, η Aquilae) is the Bayer designation for a multiple star in the equatorial constellation of Aquila, the eagle. It was once part of the former constellation Antinous. On average, this star has an apparent visual magnitude of 3.87, making it one of the brighter members of Aquila. Based upon parallax measurements made during the Hipparcos mission, this star is located at a distance of roughly , although the parallax estimate has a 44% margin of error. System The η Aquilae system contains at least two stars, probably three. The primary star η Aql A is by far the brightest and dominates the spectrum. An ultraviolet excess in the spectral energy distribution suggest the presence of a faint hot companion, η Aql B, which has been given a spectral type of B8.9 V. The fractional spectral type is an artefact of the mathematics used to model the spectrum, not an indication of any specific spectral features that would be intermediate between B8 and B9. Radial ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ζ Geminorum
Zeta Geminorum (ζ Geminorum, abbreviated Zeta Gem, ζ Gem) is a bright star with cluster components, distant optical components and a likely spectroscopic partner in the zodiac constellation of Gemini — in its south, on the left 'leg' of the twin Pollux. It is a classical Cepheid variable star, of which over 800 have been found in our galaxy. As such its regular pulsation and luminosity (proven in its class to correspond) and its relative proximity means the star is a useful calibrator in computing the cosmic distance ladder. Based on parallax measurements, it is approximately 1,200 light-years from the Sun. Zeta Geminorum is the primary or 'A' component of a multiple star system designated WDS J07041+2034. It bears traditional name Mekbuda, usually anglicised to . Nomenclature ''ζ Geminorum'' ( Latinised to ''Zeta Geminorum'') is the star's Bayer designation. WDS J07041+2034 A is its designation in the Washington Double Star Catalog. The designations of the two c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Delta Cephei
Delta Cephei (δ Cep, δ Cephei) is the Bayer designation for a quadruple star system located approximately 887 light-years away in the northern constellation of Cepheus, the King. At this distance, the visual magnitude of the star is diminished by 0.23 as a result of extinction caused by gas and dust along the line of sight. It is the prototype of the Cepheid variable stars that undergo periodic changes in luminosity. Discovery Delta Cephei was discovered to be variable by John Goodricke during 1784. He describes his first observation on October 19, 1784, followed by a regular series of observations most nights until December 28. Further observations were made during the first half of 1785, the variability was described in a letter dated June 28, 1785, and formally published on January 1, 1786. This was the second variable star of this type, with eta Aquilae being discovered just a few weeks earlier, on September 10, 1784. Properties As well as being the prototype of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Milky Way
The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term ''Milky Way'' is a translation of the Latin ', from the Greek ('), meaning "milky circle". From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within. Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610. Until the early 1920s, most astronomers thought that the Milky Way contained all the stars in the Universe. Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Curtis, observations by Edwin Hubble showed that the Milky Way is just one of many galaxies. The Milky Way is a barred spiral galaxy with an estimated D25 isophotal diameter of , but only about 1,000 light years thick at the spiral arms (more at the bulg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Instability Strip
The unqualified term instability strip usually refers to a region of the Hertzsprung–Russell diagram largely occupied by several related classes of pulsating variable stars: Delta Scuti variables, SX Phoenicis variables, and rapidly oscillating Ap stars (roAps) near the main sequence; RR Lyrae variables where it intersects the horizontal branch; and the Cepheid variables where it crosses the supergiants. RV Tauri variables are also often considered to lie on the instability strip, occupying the area to the right of the brighter Cepheids (at lower temperatures), since their stellar pulsations are attributed to the same mechanism. Position on the HR diagram The Hertzsprung–Russell diagram plots the real luminosity of stars against their effective temperature (their color, given by the temperature of their photosphere). The instability strip intersects the main sequence, (the prominent diagonal band that runs from the upper left to the lower right) in the region of A and F ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cepheus (constellation)
Cepheus is a constellation in the far northern sky, named after Cepheus, a king of Aethiopia in Greek mythology. It is one of the 48 constellations listed by the second century astronomer Ptolemy, and it remains one of the 88 constellations in the modern times. The constellation's brightest star is Alpha Cephei, with an apparent magnitude of 2.5. Delta Cephei is the prototype of an important class of star known as a Cepheid variable. RW Cephei, an orange hypergiant, together with the red supergiants Mu Cephei, MY Cephei, SW Cephei, VV Cephei, and V354 Cephei are among the largest stars known. In addition, Cepheus also has the hyperluminous quasar S5 0014+81, which hosts an ultramassive black hole in its core, reported at 40 billion solar masses, about 10,000 times more massive than the central black hole of the Milky Way, making this among the most massive black holes currently known. This paper does acknowledge the possibility of an optical illusion that would cause an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |