HOME
*





Central Nervous System Effects From Radiation Exposure During Spaceflight
Travel outside the Earth's protective atmosphere, magnetosphere, and gravitational field can harm human health, and understanding such harm is essential for successful manned spaceflight. Potential effects on the central nervous system (CNS) are particularly important. A vigorous ground-based cellular and animal model research program will help quantify the risk to the CNS from space radiation exposure on future long distance space missions and promote the development of optimized countermeasures. Possible acute and late risks to the CNS from galactic cosmic rays (GCRs) and solar proton events (SPEs) are a documented concern for human exploration of the Solar System. In the past, the risks to the CNS of adults who were exposed to low to moderate doses of ionizing radiation (0 to 2 Gy (Gray) (Gy = 100 rad)) have not been a major consideration. However, the heavy ion component of space radiation presents distinct biophysical challenges to cells and tissues as compared to the phys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cell (biology)
The cell is the basic structural and functional unit of life forms. Every cell consists of a cytoplasm enclosed within a membrane, and contains many biomolecules such as proteins, DNA and RNA, as well as many small molecules of nutrients and metabolites.Cell Movements and the Shaping of the Vertebrate Body
in Chapter 21 of
Molecular Biology of the Cell
'' fourth edition, edited by Bruce Alberts (2002) published by Garland Science. The Alberts text discusses how the "cellular building blocks" move to shape developing embryos. It is also common to describe small molecules such as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Therapy
Particle therapy is a form of external beam radiotherapy using beams of energetic neutrons, protons, or other heavier positive ions for cancer treatment. The most common type of particle therapy as of August 2021 is proton therapy. In contrast to X-rays (photon beams) used in older radiotherapy, particle beams exhibit a Bragg peak in energy loss through the body, delivering their maximum radiation dose at or near the tumor and minimizing damage to surrounding normal tissues. Particle therapy is also referred to more technically as hadron therapy, excluding photon and electron therapy. Neutron capture therapy, which depends on a secondary nuclear reaction, is also not considered here. Muon therapy, a rare type of particle therapy not within the categories above, has also been attempted however, muons are still most commonly used for imaging, rather than therapy. Method Particle therapy works by aiming energetic ionizing particles at the target tumor. These particles damage t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dentate Gyrus
The dentate gyrus (DG) is part of the hippocampal formation in the temporal lobe of the brain, which also includes the hippocampus and the subiculum. The dentate gyrus is part of the hippocampal trisynaptic circuit and is thought to contribute to the formation of new episodic memories, the spontaneous exploration of novel environments and other functions. It is notable as being one of a select few brain structures known to have significant rates of adult neurogenesis in many species of mammals, from rodents to primates. Other sites of adult neurogenesis include the subventricular zone, the striatum and the cerebellum. However, whether significant neurogenesis exists in the adult human dentate gyrus has been a matter of debate. 2019 evidence has shown that adult neurogenesis does take place in the subventricular zone and in the subgranular zone of the dentate gyrus. Structure The dentate gyrus, like the hippocampus, consists of three distinct layers: an outer molecular layer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgranular Zone
The subgranular zone (SGZ) is a brain region in the hippocampus where adult neurogenesis occurs. The other major site of adult neurogenesis is the subventricular zone (SVZ) in the brain. Structure The subgranular zone is a narrow layer of cells located between the granule cell layer and hilus of the dentate gyrus. This layer is characterized by several types of cells, the most prominent type being neural stem cells (NSCs) in various stages of development. However, in addition to NSCs, there are also astrocytes, endothelial cells, blood vessels, and other components, which form a microenvironment that supports the NSCs and regulates their proliferation, migration, and differentiation. The discovery of this complex microenvironment and its crucial role in NSC development has led some to label it as a neurogenic “niche”. It is also frequently referred to as a vascular, or angiogenic, niche due to the importance and pervasiveness of the blood vessels in the SGZ. Neural stem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oligodendrocytes
Oligodendrocytes (), or oligodendroglia, are a type of neuroglia whose main functions are to provide support and insulation to axons in the central nervous system of jawed vertebrates, equivalent to the function performed by Schwann cells in the peripheral nervous system. Oligodendrocytes do this by creating the myelin sheath. A single oligodendrocyte can extend its processes to 50 axons, wrapping approximately 1 μm of myelin sheath around each axon; Schwann cells, on the other hand, can wrap around only one axon. Each oligodendrocyte forms one segment of myelin for several adjacent axons. Oligodendrocytes are found only in the central nervous system, which comprises the brain and spinal cord. These cells were originally thought to have been produced in the ventral neural tube; however, research now shows oligodendrocytes originate from the ventral ventricular zone of the embryonic spinal cord and possibly have some concentrations in the forebrain. They are the last cell t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Space Radiation
Health threats from cosmic rays are the dangers posed by cosmic rays to astronauts on interplanetary missions or any missions that venture through the Van-Allen Belts or outside the Earth's magnetosphere. They are one of the greatest barriers standing in the way of plans for interplanetary travel by crewed spacecraft, but space radiation health risks also occur for missions in low Earth orbit such as the International Space Station (ISS). In October 2015, the NASA Office of Inspector General issued a health hazards report related to space exploration, including a human mission to Mars. The deep-space radiation environment The radiation environment of deep space is different from that on the Earth's surface or in low Earth orbit, due to the much larger flux of high-energy galactic cosmic rays (GCRs), along with radiation from solar proton events (SPEs) and the radiation belts. Galactic cosmic rays (GCRs) consist of high energy protons (85%), alpha particles (14%) and ot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dopaminergic Cell Groups
Dopaminergic cell groups, DA cell groups, or dopaminergic nuclei are collections of neurons in the central nervous system that synthesize the neurotransmitter dopamine. In the 1960s, dopaminergic neurons or ''dopamine neurons'' were first identified and named by Annica Dahlström and Kjell Fuxe, who used histochemical fluorescence. The subsequent discovery of genes encoding enzymes that synthesize dopamine, and transporters that incorporate dopamine into synaptic vesicles or reclaim it after synaptic release, enabled scientists to identify dopaminergic neurons by labeling gene or protein expression that is specific to these neurons. In the mammalian brain, dopaminergic neurons form a semi-continuous population extending from the midbrain through the forebrain, with eleven named collections or clusters among them. Cell group A8 Group A8 is a small group of dopaminergic cells in rodents and primates. It is located in the midbrain reticular formation dorsolateral to the substa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Energy Transfer
In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance. It describes the action of radiation into matter. It is identical to the retarding force acting on a charged ionizing particle travelling through the matter. By definition, LET is a positive quantity. LET depends on the nature of the radiation as well as on the material traversed. A high LET will attenuate the radiation more quickly, generally making shielding more effective and preventing deep penetration. On the other hand, the higher concentration of deposited energy can cause more severe damage to any microscopic structures near the particle track. If a microscopic defect can cause larger-scale failure, as is the case in biological cells and microelectronics, the LET helps explain why radiation damage is sometimes disproportionate to the absorbed dose. Dosimetry attempts to factor in this effect with radiation weighting factors. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

X-ray
An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30  petahertz to 30  exahertz ( to ) and energies in the range 145  eV to 124 keV. X-ray wavelengths are shorter than those of UV rays and typically longer than those of gamma rays. In many languages, X-radiation is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it on November 8, 1895. He named it ''X-radiation'' to signify an unknown type of radiation.Novelline, Robert (1997). ''Squire's Fundamentals of Radiology''. Harvard University Press. 5th edition. . Spellings of ''X-ray(s)'' in English include the variants ''x-ray(s)'', ''xray(s)'', and ''X ray(s)''. The most familiar use of X-rays is checking for fractures (broken bones), but X-rays are also used in other ways. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Rays
A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation ''gamma rays'' based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power. Gamma rays from radioactive decay are in the energy range from a few kiloelectronvolts (keV) to approximately 8 megaelectronvolts (MeV), corresponding to the typical energy levels in nuclei with reasonably long lif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operant
Operant conditioning, also called instrumental conditioning, is a learning process where behaviors are modified through the association of stimuli with reinforcement or punishment. In it, operants—behaviors that affect one's environment—are conditioned to occur or not occur depending on the environmental consequences of the behavior. Operant conditioning originated in the work of Edward Thorndike, whose law of effect theorised that behaviors arise as a result of whether their consequences are satisfying or discomforting. In the 20th century, operant conditioning was studied by behaviorist psychologists, who believed that much, if not all, of mind and behaviour can be explained as a result of envirionmental conditioning. Reinforcements are environmental stimuli that increase behaviors, whereas punishments are stimuli that decrease behaviors. Both kinds of stimuli can be further categorised into positive and negative stimuli, which respectively involve the addition or removal o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neurocognitive
Neurocognitive functions are cognitive functions closely linked to the function of particular areas, neural pathways, or cortical networks in the brain, ultimately served by the substrate of the brain's neurological matrix (i.e. at the cellular and molecular level). Therefore, their understanding is closely linked to the practice of neuropsychology and cognitive neuroscience, two disciplines that broadly seek to understand how the structure and function of the brain relate to cognition and behaviour. A neurocognitive deficit is a reduction or impairment of cognitive function in one of these areas, but particularly when physical changes can be seen to have occurred in the brain, such as aging related physiological changes or after neurological illness, mental illness, drug use, or brain injury. A clinical neuropsychologist may specialise in using neuropsychological tests to detect and understand such deficits, and may be involved in the rehabilitation of an affected person. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]