Center Of Perspectivity
   HOME
*



picture info

Center Of Perspectivity
Two figures in a plane are perspective from a point ''O'', called the center of perspectivity if the lines joining corresponding points of the figures all meet at ''O''. Dually, the figures are said to be perspective from a line if the points of intersection of corresponding lines all lie on one line. The proper setting for this concept is in projective geometry where there will be no special cases due to parallel lines since all lines meet. Although stated here for figures in a plane, the concept is easily extended to higher dimensions. Terminology The line which goes through the points where the figure's corresponding sides intersect is known as the axis of perspectivity, perspective axis, homology axis, or archaically, perspectrix. The figures are said to be perspective from this axis. The point at which the lines joining the corresponding vertices of the perspective figures intersect is called the center of perspectivity, perspective center, homology center, pole, or archaica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Desargues Theorem Alt
Girard Desargues (; 21 February 1591 – September 1661) was a French mathematician and engineer, who is considered one of the founders of projective geometry. Desargues' theorem, the Desargues graph, and the crater Desargues (crater), Desargues on the Moon are named in his honour. Born in Lyon, Desargues came from a family devoted to service to the French crown. His father was a royal civil law notary, notary, an investigating commissioner of the Seneschal, Seneschal's court in Lyon (1574), the collector of the tithes on ecclesiastical revenues for the city of Lyon (1583) and for the diocese of Lyon. Girard Desargues worked as an architecture, architect from 1645. Prior to that, he had worked as a tutor and may have served as an engineer and technical consultant in the entourage of Cardinal Richelieu, Richelieu. As an architect, Desargues planned several private and public buildings in Paris and Lyon. As an engineer, he designed a system for raising water that he installed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, both infinite, such as the complex projective plane, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ergebnisse Der Mathematik Und Ihrer Grenzgebiete
''Ergebnisse der Mathematik und ihrer Grenzgebiete''/''A Series of Modern Surveys in Mathematics'' is a series of scholarly monographs published by Springer Science+Business Media. The title literally means "Results in mathematics and related areas". Most of the books were published in German or English, but there were a few in French and Italian. There have been several sequences, or ''Folge'': the original series, neue Folge, and 3.Folge. Some of the most significant mathematical monographs of 20th century appeared in this series. Original series The series started in 1932 with publication of ''Knotentheorie'' by Kurt Reidemeister as "Band 1" (English: volume 1). There seems to have been double numeration in this sequence. Neue Folge This sequence started in 1950 with the publication of ''Transfinite Zahlen'' by Heinz Bachmann. The volumes are consecutively numbered, designated as either "Band" or "Heft". A total of 100 volumes was published, often in multiple editions, but pre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Wiley & Sons
John Wiley & Sons, Inc., commonly known as Wiley (), is an American multinational publishing company founded in 1807 that focuses on academic publishing and instructional materials. The company produces books, journals, and encyclopedias, in print and electronically, as well as online products and services, training materials, and educational materials for undergraduate, graduate, and continuing education students. History The company was established in 1807 when Charles Wiley opened a print shop in Manhattan. The company was the publisher of 19th century American literary figures like James Fenimore Cooper, Washington Irving, Herman Melville, and Edgar Allan Poe, as well as of legal, religious, and other non-fiction titles. The firm took its current name in 1865. Wiley later shifted its focus to scientific, technical, and engineering subject areas, abandoning its literary interests. Wiley's son John (born in Flatbush, New York, October 4, 1808; died in East Orange, New Je ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curvilinear Perspective
Curvilinear perspective, also five-point perspective, is a graphical projection used to draw 3D objects on 2D surfaces. It was formally codified in 1968 by the artists and art historians André Barre and Albert Flocon in the book ''La Perspective curviligne'',Albert Flocon and André Barre, ''La Perspective curviligne'', Flammarion, Éditeur, Paris, 1968 which was translated into English in 1987 as ''Curvilinear Perspective: From Visual Space to the Constructed Image'' and published by the University of California Press.Albert Flocon and André Barre, ''Curvilinear Perspective: From Visual Space to the Constructed Image'', (Robert Hansen, translator), University of California Press, Berkeley and Los Angeles, California, 1987 Curvilinear perspective is sometimes colloquially called fisheye perspective, by analogy to a fisheye lens. History Earlier, less mathematically precise versions can be seen in the work of the miniaturist Jean Fouquet. Leonardo da Vinci in a lost notebook sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reye Configuration
In geometry, the Reye configuration, introduced by , is a configuration of 12 points and 16 lines Line most often refers to: * Line (geometry), object with zero thickness and curvature that stretches to infinity * Telephone line, a single-user circuit on a telephone communication system Line, lines, The Line, or LINE may also refer to: Arts .... Each point of the configuration belongs to four lines, and each line contains three points. Therefore, in the notation of configurations, the Reye configuration is written as . Realization The Reye configuration can be realized in three-dimensional projective space by taking the lines to be the 12 edges and four long diagonals of a cube, and the points as the eight vertices of the cube, its center, and the three points where groups of four parallel cube edges meet the plane at infinity. Two regular tetrahedron, tetrahedra may be inscribed within a cube, forming a stella octangula; these two tetrahedra are perspective figures to each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pappus Configuration
In geometry, the Pappus configuration is a configuration of nine points and nine lines in the Euclidean plane, with three points per line and three lines through each point. History and construction This configuration is named after Pappus of Alexandria. Pappus's hexagon theorem states that every two triples of collinear points ''ABC'' and ''abc'' (none of which lie on the intersection of the two lines) can be completed to form a Pappus configuration, by adding the six lines ''Ab'', ''aB'', ''Ac'', ''aC'', ''Bc'', and ''bC'', and their three intersection points , , and . These three points are the intersection points of the "opposite" sides of the hexagon ''AbCaBc''. According to Pappus' theorem, the resulting system of nine points and eight lines always has a ninth line containing the three intersection points ''X'', ''Y'', and ''Z'', called the ''Pappus line''. The Pappus configuration can also be derived from two triangles ''XcC'' and ''YbB'' that are in perspective with e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pappus's Hexagon Theorem
In mathematics, Pappus's hexagon theorem (attributed to Pappus of Alexandria) states that *given one set of collinear points A, B, C, and another set of collinear points a,b,c, then the intersection points X,Y,Z of line pairs Ab and aB, Ac and aC, Bc and bC are collinear, lying on the ''Pappus line''. These three points are the points of intersection of the "opposite" sides of the hexagon AbCaBc. It holds in a projective plane over any field, but fails for projective planes over any noncommutative division ring. Projective planes in which the "theorem" is valid are called pappian planes. If one restricts the projective plane such that the Pappus line u is the line at infinity, one gets the ''affine version'' of Pappus's theorem shown in the second diagram. If the Pappus line u and the lines g,h have a point in common, one gets the so-called little version of Pappus's theorem. The dual of this incidence theorem states that given one set of concurrent lines A, B, C, and an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pappus Hexagon
Pappus may refer to: * Pappus (botany), a structure within certain flowers * ''Pappus'' (bug), a genus of insects in the tribe Mirini * Pappus of Alexandria, Greek mathematician ** Pappus's hexagon theorem, often just called 'Pappus's theorem', a theorem named for Pappus of Alexandria ** Pappus's centroid theorem, another theorem named for Pappus of Alexandria ** Pappus configuration, a geometric configuration related to 'Pappus's theorem' ** Pappus graph, a graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ... related to the pappus configuration See also * Papus (other) {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Desargues Configuration
In geometry, the Desargues configuration is a configuration of ten points and ten lines, with three points per line and three lines per point. It is named after Girard Desargues. The Desargues configuration can be constructed in two dimensions from the points and lines occurring in Desargues's theorem, in three dimensions from five planes in general position, or in four dimensions from the 5-cell, the four-dimensional regular simplex. It has a large group of symmetries, taking any point to any other point and any line to any other line. It is also self-dual, meaning that if the points are replaced by lines and vice versa using projective duality, the same configuration results. Graphs associated with the Desargues configuration include the Desargues graph (its graph of point-line incidences) and the Petersen graph (its graph of non-incident lines). The Desargues configuration is one of ten different configurations with ten points and lines, three points per line, and three lines ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Duality
In geometry, a striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this concept. There are two approaches to the subject of duality, one through language () and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a ''duality''. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry. Principle of duality A projective plane may be defined axiomatically as an incidence structure, in terms of a set of ''points'', a set of ''lines'', and an incidence relation that determines which points lie on which lines. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]