HOME
*





Cauchy's Integral Theorem
In mathematics, the Cauchy integral theorem (also known as the Cauchy–Goursat theorem) in complex analysis, named after Augustin-Louis Cauchy (and Édouard Goursat), is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if f(z) is holomorphic in a simply connected domain Ω, then for any simply closed contour C in Ω, that contour integral is zero. \int_C f(z)\,dz = 0. Statement Fundamental theorem for complex line integrals If is a holomorphic function on an open region , and \gamma is a curve in from z_0 to z_1 then, \int_f'(z) \, dz = f(z_1)-f(z_0). Also, when has a single-valued antiderivative in an open region , then the path integral \int_f'(z) \, dz is path independent for all paths in . Formulation on simply connected regions Let U \subseteq \Complex be a simply connected open set, and let f: U \to \Complex be a holomorphic function. Let \gamma: ,b\to U be a smooth closed curve. Then: \int_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Theorem Of Calculus
The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). The two operations are inverses of each other apart from a constant value which depends on where one starts to compute area. The first part of the theorem, the first fundamental theorem of calculus, states that for a function , an antiderivative or indefinite integral may be obtained as the integral of over an interval with a variable upper bound. This implies the existence of antiderivatives for continuous functions. Conversely, the second part of the theorem, the second fundamental theorem of calculus, states that the integral of a function over a fixed interval is equal to the change of any antiderivative between the ends of the interval. This greatly simplifies the calculation of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


McGraw-Hill
McGraw Hill is an American educational publishing company and one of the "big three" educational publishers that publishes educational content, software, and services for pre-K through postgraduate education. The company also publishes reference and trade publications for the medical, business, and engineering professions. McGraw Hill operates in 28 countries, has about 4,000 employees globally, and offers products and services to about 140 countries in about 60 languages. Formerly a division of The McGraw Hill Companies (later renamed McGraw Hill Financial, now S&P Global), McGraw Hill Education was divested and acquired by Apollo Global Management in March 2013 for $2.4 billion in cash. McGraw Hill was sold in 2021 to Platinum Equity for $4.5 billion. Corporate History McGraw Hill was founded in 1888 when James H. McGraw, co-founder of the company, purchased the ''American Journal of Railway Appliances''. He continued to add further publications, eventually establishing The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Star Domain
In geometry, a set S in the Euclidean space \R^n is called a star domain (or star-convex set, star-shaped set or radially convex set) if there exists an s_0 \in S such that for all s \in S, the line segment from s_0 to s lies in S. This definition is immediately generalizable to any real, or complex, vector space. Intuitively, if one thinks of S as a region surrounded by a wall, S is a star domain if one can find a vantage point s_0 in S from which any point s in S is within line-of-sight. A similar, but distinct, concept is that of a radial set. Definition Given two points x and y in a vector space X (such as Euclidean space \R^n), the convex hull of \ is called the and it is denoted by \left , y\right~:=~ \left\ ~=~ x + (y - x) , 1 where z , 1:= \ for every vector z. A subset S of a vector space X is said to be s_0 \in S if for every s \in S, the closed interval \left _0, s\right\subseteq S. A set S is and is called a if there exists some point s_0 \in S such that S i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Methods Of Contour Integration
In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane. Contour integration is closely related to the calculus of residues, a method of complex analysis. One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. Contour integration methods include: * direct integration of a complex-valued function along a curve in the complex plane (a ''contour''); * application of the Cauchy integral formula; and * application of the residue theorem. One method can be used, or a combination of these methods, or various limiting processes, for the purpose of finding these integrals or sums. Curves in the complex plane In complex analysis a contour is a type of curve in the complex plane. In contour integration, contours provide a precise definition of the curves on which an integral may be suitably defined. A curve in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Morera's Theorem
In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic. Morera's theorem states that a continuous, complex-valued function ''f'' defined on an open set ''D'' in the complex plane that satisfies \oint_\gamma f(z)\,dz = 0 for every closed piecewise ''C''1 curve \gamma in ''D'' must be holomorphic on ''D''. The assumption of Morera's theorem is equivalent to ''f'' locally having an antiderivative on ''D''. The converse of the theorem is not true in general. A holomorphic function need not possess an antiderivative on its domain, unless one imposes additional assumptions. The converse does hold e.g. if the domain is simply connected; this is Cauchy's integral theorem, stating that the line integral of a holomorphic function along a closed curve is zero. The standard counterexample is the function , which is holomorphic on C − . On any simply connected ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cauchy–Riemann Equations
In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which, together with certain continuity and differentiability criteria, form a necessary and sufficient condition for a complex function to be holomorphic (complex differentiable). This system of equations first appeared in the work of Jean le Rond d'Alembert. Later, Leonhard Euler connected this system to the analytic functions. Cauchy then used these equations to construct his theory of functions. Riemann's dissertation on the theory of functions appeared in 1851. The Cauchy–Riemann equations on a pair of real-valued functions of two real variables and are the two equations: Typically ''u'' and ''v'' are taken to be the real and imaginary parts respectively of a complex-valued function of a single complex variable , . Suppose that and are real-differentiable at a point in an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Green's Theorem
In vector calculus, Green's theorem relates a line integral around a simple closed curve to a double integral over the plane region bounded by . It is the two-dimensional special case of Stokes' theorem. Theorem Let be a positively oriented, piecewise smooth, simple closed curve in a plane, and let be the region bounded by . If and are functions of defined on an open region containing and have continuous partial derivatives there, then \oint_C (L\, dx + M\, dy) = \iint_ \left(\frac - \frac\right) dx\, dy where the path of integration along is anticlockwise. In physics, Green's theorem finds many applications. One is solving two-dimensional flow integrals, stating that the sum of fluid outflowing from a volume is equal to the total outflow summed about an enclosing area. In plane geometry, and in particular, area surveying, Green's theorem can be used to determine the area and centroid of plane figures solely by integrating over the perimeter. Proof when ''D'' is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Residue Theorem
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. From a geometrical perspective, it can be seen as a special case of the generalized Stokes' theorem. Statement The statement is as follows: Let be a simply connected open subset of the complex plane containing a finite list of points , , and a function defined and holomorphic on . Let be a closed rectifiable curve in , and denote the winding number of around by . The line integral of around is equal to times the sum of residues of at the points, each counted as many times as winds around the point: \oint_\gamma f(z)\, dz = 2\pi i \sum_^n \operatorname(\gamma, a_k) \operatorname( f, a_k ). If is a positively oriented simple closed curve, if i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jordan Curve Theorem
In topology, the Jordan curve theorem asserts that every ''Jordan curve'' (a plane simple closed curve) divides the plane into an " interior" region bounded by the curve and an "exterior" region containing all of the nearby and far away exterior points. Every continuous path connecting a point of one region to a point of the other intersects with the curve somewhere. While the theorem seems intuitively obvious, it takes some ingenuity to prove it by elementary means. ''"Although the JCT is one of the best known topological theorems, there are many, even among professional mathematicians, who have never read a proof of it."'' (). More transparent proofs rely on the mathematical machinery of algebraic topology, and these lead to generalizations to higher-dimensional spaces. The Jordan curve theorem is named after the mathematician Camille Jordan (1838–1922), who found its first proof. For decades, mathematicians generally thought that this proof was flawed and that the first rigo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rectifiable Curve
Rectification has the following technical meanings: Mathematics * Rectification (geometry), truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points * Rectifiable curve, in mathematics * Rectifiable set, in mathematics Science * GHK flux equation#Rectification, in biology, a process in cell membranes Technology * Image rectification, adjustment of images to simplify stereo vision or to map images to a map coordinate system (GIS) * The function of a rectifier, a device that converts alternating electrical current to direct current * Rectified airspeed, a means of displaying the airspeed of high-speed aircraft * Rectification (chemical/process engineering), countercurrent distillation, a unit operation also used for the production of rectified spirit (see Distillation#Fractional distillation) Other uses * Rectification (law), an equitable legal remedy whereby a court orders a change in a written document to reflect what i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]