Casson Handle
In 4-dimensional topology, a branch of mathematics, a Casson handle is a 4-dimensional topological 2-handle constructed by an infinite procedure. They are named for Andrew Casson, who introduced them in about 1973. They were originally called "flexible handles" by Casson himself, and introduced the name "Casson handle" by which they are known today. In that work he showed that Casson handles are topological 2-handles, and used this to classify simply connected compact topological 4-manifolds. Motivation In the proof of the h-cobordism theorem, the following construction is used. Given a circle in the boundary of a manifold, we would often like to find a disk embedded in the manifold whose boundary is the given circle. If the manifold is simply connected then we can find a map from a disc to the manifold with boundary the given circle, and if the manifold is of dimension at least 5 then by putting this disc in "general position" it becomes an embedding. The number 5 appears for the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Handle (mathematics)
In mathematics, a handle decomposition of an ''m''-manifold ''M'' is a union \emptyset = M_ \subset M_0 \subset M_1 \subset M_2 \subset \dots \subset M_ \subset M_m = M where each M_i is obtained from M_ by the attaching of i-handles. A handle decomposition is to a manifold what a CW-decomposition is to a topological space—in many regards the purpose of a handle decomposition is to have a language analogous to CW-complexes, but adapted to the world of smooth manifolds. Thus an ''i''-handle is the smooth analogue of an ''i''-cell. Handle decompositions of manifolds arise naturally via Morse theory. The modification of handle structures is closely linked to Cerf theory. Motivation Consider the standard CW-decomposition of the ''n''-sphere, with one zero cell and a single ''n''-cell. From the point of view of smooth manifolds, this is a degenerate decomposition of the sphere, as there is no natural way to see the smooth structure of S^n from the eyes of this decomposition—i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Andrew Casson
Andrew John Casson FRS (born 1943) is a mathematician, studying geometric topology. Casson is the Philip Schuyler Beebe Professor of Mathematics at Yale University. Education and Career Casson was educated at Latymer Upper School and Trinity College, Cambridge, where he graduated with a BA in the Mathematical Tripos in 1965.'University News: Cambridge Tripos Results', ''Times'', 21 June 1965. His doctoral advisor at the University of Liverpool was C. T. C. Wall, but he never completed his doctorate; instead what would have been his Ph.D. thesis became his fellowship dissertation as a research fellow at Trinity College. Casson was Professor of Mathematics at the University of Texas at Austin between 1981 and 1986, at the University of California, Berkeley, from 1986 to 2000, and has been at Yale since 2000. Work Casson has worked in both high-dimensional manifold topology and 3- and 4-dimensional topology, using both geometric and algebraic techniques. Among other discoveries, h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
4-manifold
In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic). 4-manifolds are important in physics because in General Relativity, spacetime is modeled as a pseudo-Riemannian 4-manifold. Topological 4-manifolds The homotopy type of a simply connected compact 4-manifold only depends on the intersection form on the middle dimensional homology. A famous theorem of implies that the homeomorphism type of the manifold only depends on this intersection form, and on a \Z/2\Z invariant called the Kirby–Siebenmann invariant, and moreover that every combination of unimodular form and Ki ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
H-cobordism Theorem
In geometric topology and differential topology, an (''n'' + 1)-dimensional cobordism ''W'' between ''n''-dimensional manifolds ''M'' and ''N'' is an ''h''-cobordism (the ''h'' stands for homotopy equivalence) if the inclusion maps : M \hookrightarrow W \quad\mbox\quad N \hookrightarrow W are homotopy equivalences. The ''h''-cobordism theorem gives sufficient conditions for an ''h''-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder ''M'' × , 1 Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds. The theorem was first proved by Stephen Smale for which he received the Fields Medal and is a fundamental result in the theory of high-dimensional manifolds. For a start, it almost immediately proves the generalized Poincaré conjecture. Background Before Smale proved this theorem, mathematicians became stuck while trying to understand manifolds of dimension 3 or 4, and assumed that the higher-dimensional cases were e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
General Position
In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the ''general case'' situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings. For example, generically, two lines in the plane intersect in a single point (they are not parallel or coincident). One also says "two generic lines intersect in a point", which is formalized by the notion of a generic point. Similarly, three generic points in the plane are not collinear; if three points are collinear (even stronger, if two coincide), this is a degenerate case. This notion is important in mathematics and its applications, because degenerate cases may require an exceptional treatment; for example, when stating general theorems or giving precise statements thereof, and when writing computer programs (see '' generic compl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Whitney Disc
In mathematics, given two submanifolds ''A'' and ''B'' of a manifold ''X'' intersecting in two points ''p'' and ''q'', a Whitney disc is a mapping from the two-dimensional disc ''D'', with two marked points, to ''X'', such that the two marked points go to ''p'' and ''q'', one boundary arc of ''D'' goes to ''A'' and the other to ''B''.. Their existence and embeddedness is crucial in proving the cobordism theorem, where it is used to cancel the intersection points; and its failure in low dimensions corresponds to not being able to embed a Whitney disc. Casson handles are an important technical tool for constructing the embedded Whitney disc relevant to many results on topological four-manifolds. Pseudoholomorphic Whitney discs are counted by the differential in Lagrangian intersection Floer homology In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional ana ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Whitehead Continuum
In mathematics, the Whitehead manifold is an open 3-manifold that is contractible, but not homeomorphic to \R^3. discovered this puzzling object while he was trying to prove the Poincaré conjecture, correcting an error in an earlier paper where he incorrectly claimed that no such manifold exists. A contractible manifold is one that can continuously be shrunk to a point inside the manifold itself. For example, an open ball is a contractible manifold. All manifolds homeomorphic to the ball are contractible, too. One can ask whether ''all'' contractible manifolds are homeomorphic to a ball. For dimensions 1 and 2, the answer is classical and it is "yes". In dimension 2, it follows, for example, from the Riemann mapping theorem. Dimension 3 presents the first counterexample: the Whitehead manifold. Construction Take a copy of S^3, the three-dimensional sphere. Now find a compact unknotted solid torus T_1 inside the sphere. (A solid torus is an ordinary three-dimensional doughnut, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Donaldson's Theorem
In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the . The original version of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group. History The theorem was proved by Simon Donaldson. This was a contribution cited for his Fields medal in 1986. Idea of proof Donaldson's proof utilizes the moduli space \mathcal_P of solutions to the anti-self-duality equations on a principal \operatorname(2)-bundle P over the four-manifold X. By the Atiyah–Singer index theorem, the dimension of the moduli space is given by :\dim \mathcal = 8k - 3(1-b_1(X) + b_+(X)), where c_2(P)=k, b_1(X) is the first Betti number of X and b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poincaré Conjecture
In the mathematics, mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the Characterization (mathematics), characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured by Henri Poincaré in 1904, the Grigori Perelman's theorem concerns spaces that locally look like ordinary Euclidean space, three-dimensional space but which are finite in extent. Poincaré hypothesized that if such a space has the additional property that each path (topology), loop in the space can be continuously tightened to a point, then it is necessarily a 3-sphere, three-dimensional sphere. Attempts to resolve the conjecture drove much progress in the field of geometric topology during the 20th century. The Perelman's proof built upon Richard S. Hamilton's ideas of using the Ricci flow to solve the problem. By developing a number of breakthrough new techniques and results in the theory of Ricci ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Differential Geometry
The ''Journal of Differential Geometry'' is a peer-reviewed scientific journal of mathematics published by International Press on behalf of Lehigh University in 3 volumes of 3 issues each per year. The journal publishes an annual supplement in book form called ''Surveys in Differential Geometry''. It covers differential geometry and related subjects such as differential equations, mathematical physics, algebraic geometry, and geometric topology. The editor-in-chief is Shing-Tung Yau of Harvard University. History The journal was established in 1967 by Chuan-Chih Hsiung, who was a professor in the Department of Mathematics at Lehigh University at the time. Hsiung served as the journal's editor-in-chief, and later co-editor-in-chief, until his death in 2009. In May 1996, the annual Geometry and Topology conference which was held at Harvard University was dedicated to commemorating the 30th anniversary of the journal and the 80th birthday of its founder. Similarly, in May 2008 Harv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |