HOME



picture info

Cartesian Product Of Graphs
In graph theory, the Cartesian product of graphs and is a graph such that: * the vertex set of is the Cartesian product ; and * two vertices and are adjacent in if and only if either ** and is adjacent to in , or ** and is adjacent to in . The Cartesian product of graphs is sometimes called the box product of graphs arary 1969 The operation is associative, as the graphs and are naturally isomorphic. The operation is commutative as an operation on isomorphism classes of graphs, and more strongly the graphs and are naturally isomorphic, but it is not commutative as an operation on labeled graphs. The notation has often been used for Cartesian products of graphs, but is now more commonly used for another construction known as the tensor product of graphs. The square symbol is intended to be an intuitive and unambiguous notation for the Cartesian product, since it shows visually the four edges resulting from the Cartesian product of two edges. Examples * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hypercube Graph
In graph theory, the hypercube graph is the graph formed from the vertices and edges of an -dimensional hypercube. For instance, the cubical graph, cube graph is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. has vertex (graph theory), vertices, edges, and is a regular graph with edges touching each vertex. The hypercube graph may also be constructed by creating a vertex for each subset of an -element set, with two vertices adjacent when their subsets differ in a single element, or by creating a vertex for each -digit binary number, with two vertices adjacent when their binary representations differ in a single digit. It is the -fold Cartesian product of graphs, Cartesian product of the two-vertex complete graph, and may be decomposed into two copies of connected to each other by a perfect matching. Hypercube graphs should not be confused with cubic graphs, which are graphs that have exactly three edges touching each vertex. The only hyperc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Domination Number
Domination or dominant may refer to: Society * World domination, structure where one dominant power governs the planet * Colonialism in which one group (usually a nation) invades another region for material gain or to eliminate competition * Chauvinism in which a person or group consider themselves to be superior, and thus entitled to use force to dominate others * Sexual dominance involving individuals in a subset of BDSM behaviour * Hierarchy Music * Dominant (music), a diatonic scale step and diatonic function in tonal music theory Albums * ''Domination'' (Cannonball Adderley album) or the title track, 1965 * ''Domination'' (Morbid Angel album), 1995 * ''Domination'', by Domino, 2004 * ''Domination'', by Morifade, 2004 Songs * "Domination" (song), by Pantera, 1990 * "Domination", by Band-Maid from ''World Domination'', 2018 * "Domination", by Symphony X from '' Paradise Lost'', 2007 * "Domination", by Way Out West from '' Way Out West'', 1996 * "Domination", by Within ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vizing Conjecture
In graph theory, Vizing's conjecture concerns a relation between the domination number and the cartesian product of graphs. This conjecture was first stated by , and states that, if denotes the minimum number of vertices in a dominating set for the graph , then : \gamma(G\,\Box\,H) \ge \gamma(G)\gamma(H). \, conjectured a similar bound for the domination number of the tensor product of graphs; however, a counterexample was found by . Since Vizing proposed his conjecture, many mathematicians have worked on it, with partial results described below. For a more detailed overview of these results, see . Examples A 4- cycle has domination number two: any single vertex only dominates itself and its two neighbors, but any pair of vertices dominates the whole graph. The product is a four-dimensional hypercube graph; it has 16 vertices, and any single vertex can only dominate itself and four neighbors, so three vertices could only dominate 15 of the 16 vertices. Therefore, at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hedetniemi Conjecture
In graph theory, Hedetniemi's conjecture, formulated by Stephen T. Hedetniemi in 1966, concerns the connection between graph coloring and the tensor product of graphs. This conjecture states that : \chi (G \times H ) = \min\. Here \chi(G) denotes the chromatic number of an undirected finite graph G. The inequality χ(''G'' × ''H'') ≤ min is easy: if ''G'' is ''k''-colored, one can ''k''-color ''G'' × ''H'' by using the same coloring for each copy of ''G'' in the product; symmetrically if ''H'' is ''k''-colored. Thus, Hedetniemi's conjecture amounts to the assertion that tensor products cannot be colored with an unexpectedly small number of colors. A counterexample to the conjecture was discovered by (see ), thus disproving the conjecture in general. Known cases Any graph with a nonempty set of edges requires at least two colors; if ''G'' and ''H'' are not 1-colorable, that is, they both contain an edge, then their product also contains an edge, and is hence not 1-color ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chromatic Number
In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an '' edge coloring'' assigns a color to each edges so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face (or region) so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bipartite Graph
In the mathematics, mathematical field of graph theory, a bipartite graph (or bigraph) is a Graph (discrete mathematics), graph whose vertex (graph theory), vertices can be divided into two disjoint sets, disjoint and Independent set (graph theory), independent sets U and V, that is, every edge (graph theory), edge connects a Vertex (graph theory), vertex in U to one in V. Vertex sets U and V are usually called the ''parts'' of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycle (graph theory), cycles. The two sets U and V may be thought of as a graph coloring, coloring of the graph with two colors: if one colors all nodes in U blue, and all nodes in V red, each edge has endpoints of differing colors, as is required in the graph coloring problem.. In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a Gallery of named graphs, triangle: after one node is colored blue and another red, the third vertex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex-transitive Graph
In the mathematics, mathematical field of graph theory, an Graph automorphism, automorphism is a permutation of the Vertex (graph theory), vertices such that edges are mapped to edges and non-edges are mapped to non-edges. A graph is a vertex-transitive graph if, given any two vertices and of , there is an automorphism such that :f(v_1) = v_2.\ In other words, a graph is vertex-transitive if its automorphism group Group action (mathematics), acts Group_action#Remarkable properties of actions, transitively on its vertices.. A graph is vertex-transitive if and only if its graph complement is, since the group actions are identical. Every symmetric graph without isolated vertex, isolated vertices is vertex-transitive, and every vertex-transitive graph is Regular graph, regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive (for example, the Frucht graph and Tietze's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unique Factorization Domain
In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non- unit element can be written as a product of irreducible elements, uniquely up to order and units. Important examples of UFDs are the integers and polynomial rings in one or more variables with coefficients coming from the integers or from a field. Unique factorization domains appear in the following chain of class inclusions: Definition Formally, a unique factorization domain is defined to be an integral domain ''R'' in which every non-zero element ''x'' of ''R'' which is not a unit can be written as a finite product of irreducible elements ''p''''i'' of ''R'': : ''x'' = ''p''1 ''p''2 � ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semiring
In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distributive lattices. The smallest semiring that is not a ring is the two-element Boolean algebra, for instance with logical disjunction \lor as addition. A motivating example that is neither a ring nor a lattice is the set of natural numbers \N (including zero) under ordinary addition and multiplication. Semirings are abundant because a suitable multiplication operation arises as the function composition of endomorphisms over any commutative monoid. Terminology Some authors define semirings without the requirement for there to be a 0 or 1. This makes the analogy between ring and on the one hand and and on the other hand work more smoothly. These authors often use rig for the concept defined here. This originated as a joke, suggestin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Irreducible Polynomial
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as \left(x - \sqrt\right)\left(x + \sqrt\right) if it is considered as a polynomial with real coefficients. One says that the polynomial is irreducible over the integers but not over the reals. Polynomial irreducibility can be considered for polynomials with coefficients in an integral domain, and there are two common definitions. Most often, a pol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjoint Union
In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appears twice in the disjoint union, with two different labels. A disjoint union of an indexed family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injective function, injection of each A_i into A, such that the image (mathematics), images of these injections form a Partition (set theory), partition of A (that is, each element of A belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their Union (set theory), union. In category theory, the disjoint union is the coproduct of the category of sets, and thus defined up to a bijection. In this context, the notation \coprod_ A_i is often used. The disjoint union of two sets A and B is written with infix notation as A \sq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]