Carnot's Theorem (inradius, Circumradius)
In Euclidean geometry, Carnot's theorem states that the sum of the signed distances from the circumcenter ''D'' to the sides of an arbitrary triangle ''ABC'' is :DF + DG + DH = R + r,\ where ''r'' is the inradius and ''R'' is the circumradius of the triangle. Here the sign of the distances is taken to be negative if and only if the open line segment ''DX'' (''X'' = ''F'', ''G'', ''H'') lies completely outside the triangle. In the diagram, ''DF'' is negative and both ''DG'' and ''DH'' are positive. The theorem is named after Lazare Carnot (1753–1823). It is used in a proof of the Japanese theorem for concyclic polygons. References *Claudi Alsina, Roger B. Nelsen: ''When Less is More: Visualizing Basic Inequalities''. MAA, 2009, , 99*Frédéric Perrier: ''Carnot's Theorem in Trigonometric Disguise''. The Mathematical Gazette, Volume 91, No. 520 (March, 2007), pp. 115–117JSTOR *David Richeson''The Japanese Theorem for Nonconvex Polygons – Carnot's Theorem'' Conve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carnot Theorem2
Carnot may refer to: People * Carnot Posey (1818–1863), American lawyer and military officer People with the surname *Lazare Carnot (1753-1823), French mathematician and politician of the French Revolution * Louis Carnot (born 2001), French French footballer *Nicolas Léonard Sadi Carnot (1796-1832), French military scientist and physicist; son of Lazare Carnot, namesake of Carnot Cycle. * Hippolyte Carnot (1801-1888), French politician; son of Lazare Carnot * Marie François Sadi Carnot (1837-1894), French politician; President of France from 1887 to 1894 and son of Hippolyte Carnot * Marie-Adolphe Carnot (1839-1920), French mining engineer and chemist; son of Hippolyte Carnot *Paul Carnot (1869-1957), French physician; son of Marie-Adolphe Carnot * Stéphane Carnot (born 1972), former French footballer Places *Carnot, Central African Republic, a city * Carnot, Wisconsin, United States * Carnot-Moon, Pennsylvania, United States Other uses *Carnot cycle, in thermodynamics *Ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclidean Geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. One of those is the parallel postulate which relates to parallel lines on a Euclidean plane. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a logic, logical system in which each result is ''mathematical proof, proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the ''Elements'' states results of what are now called algebra and number theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Signed Distance
In mathematics and its applications, the signed distance function or signed distance field (SDF) is the orthogonal distance of a given point ''x'' to the boundary of a set Ω in a metric space (such as the surface of a geometric shape), with the sign determined by whether or not ''x'' is in the interior of Ω. The function has positive values at points ''x'' inside Ω, it decreases in value as ''x'' approaches the boundary of Ω where the signed distance function is zero, and it takes negative values outside of Ω. However, the alternative convention is also sometimes taken instead (i.e., negative inside Ω and positive outside). The concept also sometimes goes by the name oriented distance function/field. Definition Let be a subset of a metric space with metric , and \partial\Omega be its boundary. The distance between a point of and the subset \partial\Omega of is defined as usual as : d(x, \partial \Omega) = \inf_d(x, y), where \inf denotes the infimum. The ''sig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circumcenter
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an -sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case , a cyclic quadrilateral. All rectangles, isosceles trapezoids, right kites, and regular polygons are cyclic, but not every polygon is. Straightedge and compass construction The circumcenter of a triangle can be constructed by drawing any two of the three perpendicular bisectors. For three non-collinear points, these two lines cannot be parallel, and the circumcenter is the point where they cross. Any point on the bisector is equidistant from th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inradius
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extended side, extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal and external angle, internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the internal and external angle, external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is per ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distances
Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). The term is also frequently used metaphorically to mean a measurement of the amount of difference between two similar objects (such as statistical distance between probability distributions or edit distance between strings of text) or a degree of separation (as exemplified by distance between people in a social network). Most such notions of distance, both physical and metaphorical, are formalized in mathematics using the notion of a metric space. In the social sciences, distance can refer to a qualitative measurement of separation, such as social distance or psychological distance. Distances in physics and geometry The distance between physical locations can be defined in different ways in different contexts. Strai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Line Segment
In geometry, a line segment is a part of a line (mathematics), straight line that is bounded by two distinct endpoints (its extreme points), and contains every Point (geometry), point on the line that is between its endpoints. It is a special case of an ''arc (geometry), arc'', with zero curvature. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using an overline (vinculum (symbol), vinculum) above the symbols for the two endpoints, such as in . Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron, the line segment is either an edge (geometry), edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal. Wh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lazare Carnot
Lazare Nicolas Marguerite, Comte Carnot (; 13 May 1753 – 2 August 1823) was a French mathematician, physicist, military officer, politician and a leading member of the Committee of Public Safety during the French Revolution. His military reforms, which included the introduction of mass conscription (''levée en masse''), were instrumental in transforming the French Revolutionary Army into an effective fighting force. Carnot was elected to the National Convention in 1792, and a year later he became a member of the Committee of Public Safety, where he directed the French war effort as one of the Ministers of War during the War of the First Coalition. He oversaw the reorganization of the army, imposed discipline, and significantly expanded the French force through the imposition of mass conscription. Credited with France's renewed military success from 1793 to 1794, Carnot came to be known as the "Organizer of Victory". Increasingly disillusioned with the radical politics of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Japanese Theorem For Concyclic Polygons
Japanese may refer to: * Something from or related to Japan, an island country in East Asia * Japanese language, spoken mainly in Japan * Japanese people, the ethnic group that identifies with Japan through ancestry or culture ** Japanese diaspora, Japanese emigrants and their descendants around the world * Japanese citizens, nationals of Japan under Japanese nationality law ** Foreign-born Japanese, naturalized citizens of Japan * Japanese writing system, consisting of kanji and kana * Japanese cuisine, the food and food culture of Japan See also * List of Japanese people * * Japonica (other) * Japanese studies , sometimes known as Japanology in Europe, is a sub-field of area studies or East Asian studies involved in social sciences and humanities research on Japan. It incorporates fields such as the study of Japanese language, history, culture, litera ... {{disambiguation Language and nationality disambiguation pages ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cut-the-knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet Union, Soviet-born Israeli Americans, Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Mathematics, senior instructor at Hebrew University and software consultant at Ben Gurion University. He wrote extensively about arithmetic, probability, algebra, geometry, trigonometry and mathematical games. He was known for his contribution to heuristics and mathematics education, creating and maintaining the mathematically themed educational website ''Cut-the-Knot'' for the Mathematical Association of America (MAA) Online. He was a pioneer in mathematical education on the internet, having started ''Cut-the-Knot'' in October 1996. [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wolfram Demonstrations Project
The Wolfram Demonstrations Project is an Open source, open-source collection of Interactive computing, interactive programmes called Demonstrations. It is hosted by Wolfram Research. At its launch, it contained 1300 demonstrations but has grown to over 10,000. The site won a Parents' Choice Award in 2008. Wolfram Research's staff organizes and edits the Demonstrations, which may be created by any user of Wolfram Mathematica, Mathematica, then freely published and freely downloaded. Technology The Demonstrations run in Wolfram Mathematica, Mathematica 6 or above and in Wolfram Computable Document Format, CDF Player, which is a free modified version of Wolfram Mathematica and available for Microsoft Windows, Windows, Linux, and macOS and can operate as a web Browser extension, browser plugin. Demonstrations can also be embedded into a website. Each Demonstration page includes a snippet of JavaScript code in the Share section of the sidebar. The Demonstrations typically consist of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |