Canonizant
   HOME
*





Canonizant
In mathematical invariant theory, the canonizant or canonisant is a covariant of forms related to a canonical form for them. Canonizants of a binary form The canonizant of a binary form of degree 2''n'' – 1 is a covariant of degree ''n'' and order ''n'', given by the catalecticant of the penultimate emanant, which is the determinant of the ''n'' by ''n'' Hankel matrix with entries ''a''''i''+''j''''x'' + ''a''''i''+''j''+1''y'' for 0 ≤ ''i'',''j'' < ''n''.


References

* Invariant theory {{math-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Invariant Theory
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are ''invariant'', under the transformations from a given linear group. For example, if we consider the action of the special linear group ''SLn'' on the space of ''n'' by ''n'' matrices by left multiplication, then the determinant is an invariant of this action because the determinant of ''A X'' equals the determinant of ''X'', when ''A'' is in ''SLn''. Introduction Let G be a group, and V a finite-dimensional vector space over a field k (which in classical invariant theory was usually assumed to be the complex numbers). A representation of G in V is a group homomorphism \pi:G \to GL(V), which induces a group action of G on V. If k /math> is the space of polynomial functions on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Catalecticant
In mathematical invariant theory, the catalecticant of a form of even degree is a polynomial in its coefficients that vanishes when the form is a sum of an unusually small number of powers of linear forms. It was introduced by ; see . The word catalectic refers to an incomplete line of verse, lacking a syllable at the end or ending with an incomplete foot. Binary forms The catalecticant of a binary form of degree 2''n'' is a polynomial in its coefficients that vanishes when the binary form is a sum of at most ''n'' powers of linear forms . The catalecticant of a binary form can be given as the determinant of a catalecticant matrix , also called a Hankel matrix, that is a square matrix In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Square matrices are often ... with constant (positive sloping) skew-diag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial of (t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hankel Matrix
In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a square matrix in which each ascending skew-diagonal from left to right is constant, e.g.: \qquad\begin a & b & c & d & e \\ b & c & d & e & f \\ c & d & e & f & g \\ d & e & f & g & h \\ e & f & g & h & i \\ \end. More generally, a Hankel matrix is any n \times n matrix A of the form A = \begin a_ & a_ & a_ & \ldots & \ldots &a_ \\ a_ & a_2 & & & &\vdots \\ a_ & & & & & \vdots \\ \vdots & & & & & a_\\ \vdots & & & & a_& a_ \\ a_ & \ldots & \ldots & a_ & a_ & a_ \end. In terms of the components, if the i,j element of A is denoted with A_, and assuming i\le j, then we have A_ = A_ for all k = 0,...,j-i. Properties * The Hankel matrix is a symmetric matrix. * Let J_n be the n \times n exchange matrix. If H is a m \times n Hankel matrix, then H = T J_n where T is a m \times n Toeplitz matrix. ** If T is real symmetric, then H = T J_n will have the same eigenvalues as T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]