Cahen's Constant
In mathematics, Cahen's constant is defined as the value of an infinite series of unit fractions with alternating signs: :C = \sum_^\infty \frac=\frac11 - \frac12 + \frac16 - \frac1 + \frac1 - \cdots\approx 0.643410546288... Here (s_i)_ denotes Sylvester's sequence, which is defined recursively by :\begin s_0~~~ = 2; \\ s_ = 1 + \prod_^i s_j \text i \geq 0. \end Combining these fractions in pairs leads to an alternative expansion of Cahen's constant as a series of positive unit fractions formed from the terms in even positions of Sylvester's sequence. This series for Cahen's constant forms its greedy Egyptian expansion: :C = \sum\frac=\frac12+\frac17+\frac1+\frac1+\cdots This constant is named after (also known for the Cahen–Mellin integral), who was the first to introduce it and prove its irrationality. Continued fraction expansion The majority of naturally occurring mathematical constants have no known simple patterns in their continued fraction expansions. Neverthele ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Series (mathematics)
In mathematics, a series is, roughly speaking, an addition of Infinity, infinitely many Addition#Terms, terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance. Among the Ancient Greece, Ancient Greeks, the idea that a potential infinity, potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the Quadrature of the Parabola, quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unit Fraction
A unit fraction is a positive fraction with one as its numerator, 1/. It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number. Examples are 1/1, 1/2, 1/3, 1/4, 1/5, etc. When an object is divided into equal parts, each part is a unit fraction of the whole. Multiplying two unit fractions produces another unit fraction, but other arithmetic operations do not preserve unit fractions. In modular arithmetic, unit fractions can be converted into equivalent whole numbers, allowing modular division to be transformed into multiplication. Every rational number can be represented as a sum of distinct unit fractions; these representations are called Egyptian fractions based on their use in ancient Egyptian mathematics. Many infinite sums of unit fractions are meaningful mathematically. In geometry, unit fractions can be used to characterize the curvature of triangle groups and the tangencies of Ford circles. Unit fractions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sylvester's Sequence
In number theory, Sylvester's sequence is an integer sequence in which each term is the product of the previous terms, plus one. Its first few terms are :2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443 . Sylvester's sequence is named after James Joseph Sylvester, who first investigated it in 1880. Its values grow doubly exponentially, and the sum of its reciprocals forms a series of unit fractions that converges to 1 more rapidly than any other series of unit fractions. The recurrence by which it is defined allows the numbers in the sequence to be factored more easily than other numbers of the same magnitude, but, due to the rapid growth of the sequence, complete prime factorizations are known only for a few of its terms. Values derived from this sequence have also been used to construct finite Egyptian fraction representations of 1, Sasakian Einstein manifolds, and hard instances for online algorithms. Formal definitions Formally, Sylv ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Greedy Algorithm For Egyptian Fractions
In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions, such as . As the name indicates, these representations have been used as long ago as ancient Egypt, but the first published systematic method for constructing such expansions was described in 1202 in the '' Liber Abaci'' of Leonardo of Pisa (Fibonacci). It is called a greedy algorithm because at each step the algorithm chooses greedily the largest possible unit fraction that can be used in any representation of the remaining fraction. Fibonacci actually lists several different methods for constructing Egyptian fraction representations. He includes the greedy method as a last resort for situations when several simpler methods fail; see Egyptian fraction for a more detailed listing of these methods. The gre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cahen–Mellin Integral
In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions. The Mellin transform of a complex-valued function defined on \mathbf R^_+= (0,\infty) is the function \mathcal M f of complex variable s given (where it exists, see Fundamental strip below) by \mathcal\left\(s) = \varphi(s)=\int_0^\infty x^ f(x) \, dx = \int_f(x) x^s \frac. Notice that dx/x is a Haar measure on the multiplicative group \mathbf R^_+ and x\mapsto x^s is a (in general non-unitary) multiplicative character. The inverse transform is \mathcal^\left\(x) = f(x)=\frac \int_^ x^ \varphi(s)\, ds. The notati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simple Continued Fraction
A simple or regular continued fraction is a continued fraction with numerators all equal one, and denominators built from a sequence \ of integer numbers. The sequence can be finite or infinite, resulting in a finite (or terminated) continued fraction like :a_0 + \cfrac or an infinite continued fraction like :a_0 + \cfrac Typically, such a continued fraction is obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In the ''finite'' case, the iteration/recursion is stopped after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an ''infinite'' continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers a_i are called the coefficients or terms of the continued fraction. Simple co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recurrence Relation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jeffrey Shallit
Jeffrey Outlaw Shallit (born October 17, 1957) is an American computer scientist and mathematician. He is an active number theorist and a noted critic of intelligent design. He is married to Anna Lubiw, also a computer scientist. Early life and education Shallit was born in Philadelphia, Pennsylvania, in 1957. His father was journalist Joseph Shallit, the son of Jewish immigrants from Vitebsk, Russia (now in Belarus). His mother was Louise Lee Outlaw Shallit, a writer. He has one brother, Jonathan Shallit, a music professor. Shallit earned a Bachelor of Arts (B.A.) in mathematics from Princeton University in June 1979. He received a Ph.D., also in mathematics, from the University of California, Berkeley, in June 1983. His doctoral thesis was entitled ''Metric Theory of Pierce Expansions'' and his advisor was Manuel Blum. Advocacy Since 1996, Shallit has held the position of Vice-President of Electronic Frontier Canada. In 1997, he gained attention for the public ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transcendental Number
In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are and . The quality of a number being transcendental is called transcendence. Though only a few classes of transcendental numbers are known, partly because it can be extremely difficult to show that a given number is transcendental. Transcendental numbers are not rare: indeed, almost all real and complex numbers are transcendental, since the algebraic numbers form a countable set, while the set of real numbers and the set of complex numbers are both uncountable sets, and therefore larger than any countable set. All transcendental real numbers (also known as real transcendental numbers or transcendental irrational numbers) are irrational numbers, since all rational numbers are algebraic. The converse is not true: Not all irrational numbers are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nouvelles Annales De Mathématiques
The ''Nouvelles Annales de Mathématiques'' (subtitled ''Journal des candidats aux écoles polytechnique et normale'') was a French scientific journal in mathematics. It was established in 1842 by Olry Terquem and Camille-Christophe Gerono, and continued publication until 1927, with later editors including Charles-Ange Laisant and Raoul Bricard. , retrieved 2014-07-14. Initially published by Carilian-Goeury, it was taken over after several years by a different publisher, Bachelier. Although competing in subject matter with Joseph Lio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Université Du Québec à Montréal
The (UQAM; ), is a French language, French-language public university, public research university based in Montreal, Quebec, Canada. It is the largest constituent element of the system. UQAM was founded on April 9, 1969, by the government of Quebec, through the merger of the , a fine arts school; the , a classical college; and a number of smaller schools. Although part of the UQ network, UQAM possesses a relative independence which allows it to choose its rector. In the fall of 2018, the university welcomed some 40,738 students, including 3,859 international students from 95 countries, in a total of 310 distinct programs of study, managed by six faculties (Arts, Education, Communication, Political Science and Law, Science and Social science) and one school (Management). It offers Bachelor's degree, Bachelors, Master's degree, Masters, and Doctor of Philosophy, Doctoral degrees. It is one of Montreal's two French-language universities, along with the , and only 1% of its stud ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |