HOME





Cache Language Model
A cache language model is a type of statistical language model. These occur in the natural language processing subfield of computer science and assign probabilities to given sequences of words by means of a probability distribution. Statistical language models are key components of speech recognition systems and of many machine translation systems: they tell such systems which possible output word sequences are probable and which are improbable. The particular characteristic of a cache language model is that it contains a cache component and assigns relatively high probabilities to words or word sequences that occur elsewhere in a given text. The primary, but by no means sole, use of cache language models is in speech recognition systems. To understand why it is a good idea for a statistical language model to contain a cache component one might consider someone who is dictating a letter about elephants to a speech recognition system. Standard (non-cache) N-gram language models wil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Language Model
A language model is a model of the human brain's ability to produce natural language. Language models are useful for a variety of tasks, including speech recognition, machine translation,Andreas, Jacob, Andreas Vlachos, and Stephen Clark (2013)"Semantic parsing as machine translation". Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). natural language generation (generating more human-like text), optical character recognition, route optimization, handwriting recognition, grammar induction, and information retrieval. Large language models (LLMs), currently their most advanced form, are predominantly based on transformers trained on larger datasets (frequently using words scraped from the public internet). They have superseded recurrent neural network-based models, which had previously superseded the purely statistical models, such as word ''n''-gram language model. History Noam Chomsky did pioneering work on lan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Natural Language Processing
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence. It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics. Major tasks in natural language processing are speech recognition, text classification, natural language understanding, and natural language generation. History Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence, though at the time that was not articulated as a problem separate from artificial intelligence. The proposed test includes a task that involves the automated interpretation and generation of natural language. Symbolic NLP (1950s – ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Linguistics
Computational linguistics is an interdisciplinary field concerned with the computational modelling of natural language, as well as the study of appropriate computational approaches to linguistic questions. In general, computational linguistics draws upon linguistics, computer science, artificial intelligence, mathematics, logic, philosophy, cognitive science, cognitive psychology, psycholinguistics, anthropology and neuroscience, among others. Computational linguistics is closely related to mathematical linguistics. Origins The field overlapped with artificial intelligence since the efforts in the United States in the 1950s to use computers to automatically translate texts from foreign languages, particularly Russian scientific journals, into English. Since rule-based approaches were able to make arithmetic (systematic) calculations much faster and more accurately than humans, it was expected that lexicon, morphology, syntax and semantics can be learned using explicit rules, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Language Modeling
A language model is a model of the human brain's ability to produce natural language. Language models are useful for a variety of tasks, including speech recognition, machine translation,Andreas, Jacob, Andreas Vlachos, and Stephen Clark (2013)"Semantic parsing as machine translation". Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). natural language generation (generating more human-like text), optical character recognition, route optimization, handwriting recognition, grammar induction, and information retrieval. Large language models (LLMs), currently their most advanced form, are predominantly based on transformers trained on larger datasets (frequently using words scraped from the public internet). They have superseded recurrent neural network-based models, which had previously superseded the purely statistical models, such as word ''n''-gram language model. History Noam Chomsky did pioneering work on lang ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The MIT Press
The MIT Press is the university press of the Massachusetts Institute of Technology (MIT), a private research university in Cambridge, Massachusetts. The MIT Press publishes a number of academic journals and has been a pioneer in the Open Access movement in academic publishing. History MIT Press traces its origins back to 1926 when MIT published a lecture series entitled ''Problems of Atomic Dynamics'' given by the visiting German physicist and later Nobel Prize winner, Max Born. In 1932, MIT's publishing operations were first formally instituted by the creation of an imprint called Technology Press. This imprint was founded by James R. Killian, Jr., at the time editor of MIT's alumni magazine and later to become MIT president. Technology Press published eight titles independently, then in 1937 entered into an arrangement with John Wiley & Sons in which Wiley took over marketing and editorial responsibilities. In 1961, the centennial of MIT's founding charter, the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Statistical Machine Translation
Statistical machine translation (SMT) is a machine translation approach where translations are generated on the basis of statistical models whose parameters are derived from the analysis of bilingual text corpora. The statistical approach contrasts with the rule-based approaches to machine translation as well as with example-based machine translation, that superseded the previous rule-based approach that required explicit description of each and every linguistic rule, which was costly, and which often did not generalize to other languages. The first ideas of statistical machine translation were introduced by Warren Weaver in 1949, including the ideas of applying Claude Shannon's information theory. Statistical machine translation was re-introduced in the late 1980s and early 1990s by researchers at IBM's Thomas J. Watson Research Center. Before the introduction of neural machine translation, it was by far the most widely studied machine translation method. Basis The idea b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Speech Recognition
Speech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers. It is also known as automatic speech recognition (ASR), computer speech recognition or speech-to-text (STT). It incorporates knowledge and research in the computer science, linguistics and computer engineering fields. The reverse process is speech synthesis. Some speech recognition systems require "training" (also called "enrollment") where an individual speaker reads text or isolated vocabulary into the system. The system analyzes the person's specific voice and uses it to fine-tune the recognition of that person's speech, resulting in increased accuracy. Systems that do not use training are called "speaker-independent" systems. Systems that use training are called "speaker dependent". Speech recognition applications include voice user interfaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


History Of Machine Translation
Machine translation is a sub-field of computational linguistics that investigates the use of software to translate text or speech from one natural language to another. In the 1950s, machine translation became a reality in research, although references to the subject can be found as early as the 17th century. The Georgetown experiment, which involved successful fully automatic translation of more than sixty Russian sentences into English in 1954, was one of the earliest recorded projects. Researchers of the Georgetown experiment asserted their belief that machine translation would be a solved problem within a few years. In the Soviet Union, similar experiments were performed shortly after. Consequently, the success of the experiment ushered in an era of significant funding for machine translation research in the United States. The achieved progress was much slower than expected; in 1966, the ALPAC report found that ten years of research had not fulfilled the expectations of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of Natural Language Processing
The history of natural language processing describes the advances of natural language processing. There is some overlap with the history of machine translation, the history of speech recognition, and the history of artificial intelligence. Early history The history of machine translation dates back to the seventeenth century, when philosophers such as Gottfried Wilhelm Leibniz, Leibniz and Descartes put forward proposals for codes which would relate words between languages. All of these proposals remained theoretical, and none resulted in the development of an actual machine. The first patents for "translating machines" were applied for in the mid-1930s. One proposal, by Georges Artsrouni was simply an automatic bilingual dictionary using paper tape. The other proposal, by Peter Troyanskii, a Russian, was more detailed. Peter Troyanskii, Troyanski proposal included both the bilingual dictionary, and a method for dealing with grammatical roles between languages, based on Esperant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Artificial Intelligence
Artificial intelligence (AI) is the capability of computer, computational systems to perform tasks typically associated with human intelligence, such as learning, reasoning, problem-solving, perception, and decision-making. It is a field of research in computer science that develops and studies methods and software that enable machines to machine perception, perceive their environment and use machine learning, learning and intelligence to take actions that maximize their chances of achieving defined goals. High-profile applications of AI include advanced web search engines (e.g., Google Search); recommendation systems (used by YouTube, Amazon (company), Amazon, and Netflix); virtual assistants (e.g., Google Assistant, Siri, and Amazon Alexa, Alexa); autonomous vehicles (e.g., Waymo); Generative artificial intelligence, generative and Computational creativity, creative tools (e.g., ChatGPT and AI art); and Superintelligence, superhuman play and analysis in strategy games (e.g., ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feedforward Neural Network
Feedforward refers to recognition-inference architecture of neural networks. Artificial neural network architectures are based on inputs multiplied by weights to obtain outputs (inputs-to-output): feedforward. Recurrent neural networks, or neural networks with loops allow information from later processing stages to feed back to earlier stages for sequence processing. However, at every stage of inference a feedforward multiplication remains the core, essential for backpropagationRumelhart, David E., Geoffrey E. Hinton, and R. J. Williams.Learning Internal Representations by Error Propagation. David E. Rumelhart, James L. McClelland, and the PDP research group. (editors), Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundation. MIT Press, 1986. or backpropagation through time. Thus neural networks cannot contain feedback like negative feedback or positive feedback where the outputs feed back to the ''very same'' inputs and modify them, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]