CYK Algorithm
In computer science, the Cocke–Younger–Kasami algorithm (alternatively called CYK, or CKY) is a parsing algorithm for context-free grammars published by Itiroo Sakai in 1961. The algorithm is named after some of its rediscoverers: John Cocke, Daniel Younger, Tadao Kasami, and Jacob T. Schwartz. It employs bottom-up parsing and dynamic programming. The standard version of CYK operates only on context-free grammars given in Chomsky normal form (CNF). However any context-free grammar may be transformed (after convention) to a CNF grammar expressing the same language . The importance of the CYK algorithm stems from its high efficiency in certain situations. Using big ''O'' notation, the worst case running time of CYK is \mathcal\left( n^3 \cdot \left, G \ \right), where n is the length of the parsed string and \left, G \ is the size of the CNF grammar G . This makes it one of the most efficient parsing algorithms in terms of worst-case asymptotic complexity, although other ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parsing
Parsing, syntax analysis, or syntactic analysis is the process of analyzing a string of symbols, either in natural language, computer languages or data structures, conforming to the rules of a formal grammar. The term ''parsing'' comes from Latin ''pars'' (''orationis''), meaning part (of speech). The term has slightly different meanings in different branches of linguistics and computer science. Traditional sentence parsing is often performed as a method of understanding the exact meaning of a sentence or word, sometimes with the aid of devices such as sentence diagrams. It usually emphasizes the importance of grammatical divisions such as subject and predicate. Within computational linguistics the term is used to refer to the formal analysis by a computer of a sentence or other string of words into its constituents, resulting in a parse tree showing their syntactic relation to each other, which may also contain semantic and other information (p-values). Some parsing algor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CYK Algorithm Animation Showing Every Step Of A Sentence Parsing
In computer science, the Cocke–Younger–Kasami algorithm (alternatively called CYK, or CKY) is a parsing algorithm for context-free grammars published by Itiroo Sakai in 1961. The algorithm is named after some of its rediscoverers: John Cocke, Daniel Younger, Tadao Kasami, and Jacob T. Schwartz. It employs bottom-up parsing and dynamic programming. The standard version of CYK operates only on context-free grammars given in Chomsky normal form (CNF). However any context-free grammar may be transformed (after convention) to a CNF grammar expressing the same language . The importance of the CYK algorithm stems from its high efficiency in certain situations. Using big ''O'' notation, the worst case running time of CYK is \mathcal\left( n^3 \cdot \left, G \ \right), where n is the length of the parsed string and \left, G \ is the size of the CNF grammar G . This makes it one of the most efficient parsing algorithms in terms of worst-case asymptotic complexity, although other ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Packrat Parser
In computer science, a parsing expression grammar (PEG) is a type of analytic formal grammar, i.e. it describes a formal language in terms of a set of rules for recognizing strings in the language. The formalism was introduced by Bryan Ford in 2004 and is closely related to the family of top-down parsing languages introduced in the early 1970s. Syntactically, PEGs also look similar to context-free grammars (CFGs), but they have a different interpretation: the choice operator selects the first match in PEG, while it is ambiguous in CFG. This is closer to how string recognition tends to be done in practice, e.g. by a recursive descent parser. Unlike CFGs, PEGs cannot be ambiguous; a string has exactly one valid parse tree or none. It is conjectured that there exist context-free languages that cannot be recognized by a PEG, but this is not yet proven. PEGs are well-suited to parsing computer languages (and artificial human languages such as Lojban), but not natural languages where t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Earley Parser
In computer science, the Earley parser is an algorithm for parsing strings that belong to a given context-free language, though (depending on the variant) it may suffer problems with certain nullable grammars. The algorithm, named after its inventor, Jay Earley, is a chart parser that uses dynamic programming; it is mainly used for parsing in computational linguistics. It was first introduced in his dissertation in 1968 (and later appeared in an abbreviated, more legible, form in a journal). Earley parsers are appealing because they can parse all context-free languages, unlike LR parsers and LL parsers, which are more typically used in compilers but which can only handle restricted classes of languages. The Earley parser executes in cubic time in the general case (n^3), where ''n'' is the length of the parsed string, quadratic time for unambiguous grammars (n^2), and linear time for all deterministic context-free grammars. It performs particularly well when the rules are written ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
GLR Parser
A GLR parser (GLR standing for "Generalized LR", where L stands for "left-to-right" and R stands for "rightmost (derivation)") is an extension of an LR parser algorithm to handle non-deterministic and ambiguous grammars. The theoretical foundation was provided in a 1974 paper by Bernard Lang (along with other general Context-Free parsers such as GLL). It describes a systematic way to produce such algorithms, and provides uniform results regarding correctness proofs, complexity with respect to grammar classes, and optimization techniques. The first actual implementation of GLR was described in a 1984 paper by Masaru Tomita, it has also been referred to as a "parallel parser". Tomita presented five stages in his original work, though in practice it is the second stage that is recognized as the GLR parser. Though the algorithm has evolved since its original forms, the principles have remained intact. As shown by an earlier publication, Lang was primarily interested in more easily use ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Big O Notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for ''Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rates: d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coppersmith–Winograd Algorithm
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the right amount of time it should take is of major practical relevance. Directly applying the mathematical definition of matrix multiplication gives an algorithm that requires field operations to multiply two matrices over that field ( in big O notation). Surprisingly, algorithms exist that provide better running times than this straightforward "schoolbook algorithm". The first to be discovered was Strassen's algorithm, devised by Volker Strassen in 1969 and often referred to as "fast matrix multiplication". The optimal number of field operations needed to multiply two square matrices up to constant factors is still unknown. This is a major open question ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boolean Matrix
In mathematics, a Boolean matrix is a matrix with entries from a Boolean algebra. When the two-element Boolean algebra is used, the Boolean matrix is called a logical matrix. (In some contexts, particularly computer science, the term "Boolean matrix" implies this restriction.) Let ''U'' be a non-trivial Boolean algebra (i.e. with at least two elements). Intersection, union, complementation, and containment of elements is expressed in ''U''. Let ''V'' be the collection of ''n'' × ''n'' matrices that have entries taken from ''U''. Complementation of such a matrix is obtained by complementing each element. The intersection or union of two such matrices is obtained by applying the operation to entries of each pair of elements to obtain the corresponding matrix intersection or union. A matrix is contained in another if each entry of the first is contained in the corresponding entry of the second. The product of two Boolean matrices is expressed as follows: :(AB)_ = \bigcup_^n (A_ \ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matrix Multiplication Algorithm
Because matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network). Directly applying the mathematical definition of matrix multiplication gives an algorithm that takes time on the order of field operations to multiply two matrices over that field ( in big O notation). Better asymptotic bounds on the time required to multiply matrices have been known since the Strassen's algorithm in the 1960s, but the optimal time (that is, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stochastic Context-free Grammar
Grammar theory to model symbol strings originated from work in computational linguistics aiming to understand the structure of natural languages. Probabilistic context free grammars (PCFGs) have been applied in probabilistic modeling of RNA structures almost 40 years after they were introduced in computational linguistics. PCFGs extend context-free grammars similar to how hidden Markov models extend regular grammars. Each production is assigned a probability. The probability of a derivation (parse) is the product of the probabilities of the productions used in that derivation. These probabilities can be viewed as parameters of the model, and for large problems it is convenient to learn these parameters via machine learning. A probabilistic grammar's validity is constrained by context of its training dataset. PCFGs have application in areas as diverse as natural language processing to the study the structure of RNA molecules and design of programming languages. Designing efficient PC ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weighted Context-free Grammar
Grammar theory to model symbol strings originated from work in computational linguistics aiming to understand the structure of natural languages. Probabilistic context free grammars (PCFGs) have been applied in probabilistic modeling of RNA structures almost 40 years after they were introduced in computational linguistics. PCFGs extend context-free grammars similar to how hidden Markov models extend regular grammars. Each production is assigned a probability. The probability of a derivation (parse) is the product of the probabilities of the productions used in that derivation. These probabilities can be viewed as parameters of the model, and for large problems it is convenient to learn these parameters via machine learning. A probabilistic grammar's validity is constrained by context of its training dataset. PCFGs have application in areas as diverse as natural language processing to the study the structure of RNA molecules and design of programming languages. Designing efficien ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ambiguous Grammar
In computer science, an ambiguous grammar is a context-free grammar for which there exists a string that can have more than one leftmost derivation or parse tree, while an unambiguous grammar is a context-free grammar for which every valid string has a unique leftmost derivation or parse tree. Many languages admit both ambiguous and unambiguous grammars, while some languages admit only ambiguous grammars. Any non-empty language admits an ambiguous grammar by taking an unambiguous grammar and introducing a duplicate rule or synonym (the only language without ambiguous grammars is the empty language). A language that only admits ambiguous grammars is called an inherently ambiguous language, and there are inherently ambiguous context-free languages. Deterministic context-free grammars are always unambiguous, and are an important subclass of unambiguous grammars; there are non-deterministic unambiguous grammars, however. For computer programming languages, the reference grammar is ofte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |