CR Manifold
In mathematics, a CR manifold, or Cauchy–Riemann manifold, is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge. Formally, a CR manifold is a differentiable manifold ''M'' together with a preferred complex distribution ''L'', or in other words a complex subbundle of the complexified tangent bundle \Complex TM = TM \otimes_\mathbb \Complex such that * ,Lsubseteq L (''L'' is formally integrable) * L\cap\bar=\. The subbundle ''L'' is called a CR structure on the manifold ''M''. The abbreviation CR stands for " Cauchy–Riemann" or "Complex-Real". Introduction and motivation The notion of a CR structure attempts to describe ''intrinsically'' the property of being a hypersurface (or certain real submanifolds of higher codimension) in complex space by studying the properties of holomorphic vector fields which are tangent to the hypersurface. Suppose for in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eugenio Elia Levi
Eugenio Elia Levi (18 October 1883 – 28 October 1917) was an Italian mathematician, known for his fundamental contributions in group theory, in the theory of partial differential operators and in the theory of functions of several complex variables. He was a younger brother of Beppo Levi and was killed in action during First World War. Work Research activity He wrote 33 papers, classified by his colleague and friend Mauro Picone according to the scheme reproduced in this section. Differential geometry Group theory He wrote only three papers in group theory: in the first one, discovered what is now called Levi decomposition, which was conjectured by Wilhelm Killing and proved by Élie Cartan in a special case. Function theory In the theory of functions of several complex variables he introduced the concept of pseudoconvexity during his investigations on the domain of existence of such functions: it turned out to be one of the key concepts of the theory. Cauchy and Gour ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirichlet Problem
In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. The Dirichlet problem can be solved for many PDEs, although originally it was posed for Laplace's equation. In that case the problem can be stated as follows: :Given a function ''f'' that has values everywhere on the boundary of a region in R''n'', is there a unique continuous function ''u'' twice continuously differentiable in the interior and continuous on the boundary, such that ''u'' is harmonic in the interior and ''u'' = ''f'' on the boundary? This requirement is called the Dirichlet boundary condition. The main issue is to prove the existence of a solution; uniqueness can be proved using the maximum principle. History The Dirichlet problem goes back to George Green, who studied the problem on general domains with general boundary condi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stein Manifold
In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of ''n'' complex dimensions. They were introduced by and named after . A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry. Definition Suppose X is a complex manifold of complex dimension n and let \mathcal O(X) denote the ring of holomorphic functions on X. We call X a Stein manifold if the following conditions hold: * X is holomorphically convex, i.e. for every compact subset K \subset X, the so-called ''holomorphically convex hull'', ::\bar K = \left \, :is also a ''compact'' subset of X. * X is holomorphically separable, i.e. if x \neq y are two points in X, then there exists f \in \mathcal O(X) such that f(x) \neq f(y). Non-compact Riemann surfaces are Stein manifolds Let ''X'' be a connected, non-compact Riema ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plurisubharmonic Function
In mathematics, plurisubharmonic functions (sometimes abbreviated as psh, plsh, or plush functions) form an important class of functions used in complex analysis. On a Kähler manifold, plurisubharmonic functions form a subset of the subharmonic functions. However, unlike subharmonic functions (which are defined on a Riemannian manifold) plurisubharmonic functions can be defined in full generality on complex analytic spaces. Formal definition A function :f \colon G \to \cup\, with ''domain'' G \subset ^n is called plurisubharmonic if it is upper semi-continuous, and for every complex line :\\subset ^n with a, b \in ^n the function z \mapsto f(a + bz) is a subharmonic function on the set :\. In ''full generality'', the notion can be defined on an arbitrary complex manifold or even a complex analytic space X as follows. An upper semi-continuous function :f \colon X \to \cup \ is said to be plurisubharmonic if and only if for any holomorphic map \varphi\colon\Delta\to X the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudoconvexity
In mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the ''n''-dimensional complex space C''n''. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy. Let :G\subset ^n be a domain, that is, an open connected subset. One says that G is ''pseudoconvex'' (or '' Hartogs pseudoconvex'') if there exists a continuous plurisubharmonic function \varphi on G such that the set :\ is a relatively compact subset of G for all real numbers x. In other words, a domain is pseudoconvex if G has a continuous plurisubharmonic exhaustion function. Every (geometrically) convex set is pseudoconvex. However, there are pseudoconvex domains which are not geometrically convex. When G has a C^2 (twice continuously differentiable) boundary, this notion is the same as Levi pseudoconvexity, which is easier to work with. More specifically, with a C^2 boundary, it can be shown t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hermitian Metric
In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure. A complex structure is essentially an almost complex structure with an integrability condition, and this condition yields a unitary structure ( U(n) structure) on the manifold. By dropping this condition, we get an almost Hermitian manifold. On any almost Hermitian manifold, we can introduce a fundamental 2-form (or cosymplectic structure) that depends only on the chosen metric and the almost complex structure. This form is always non-degenerate. With the extra integrability condition that it is closed (i.e., it is a symplectic form), we get an almost Kähler structure. If both the almos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Form
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression is an example of a -form, and can be integrated over an interval contained in the domain of : :\int_a^b f(x)\,dx. Similarly, the expression is a -form that can be integrated over a surface : :\int_S (f(x,y,z)\,dx\wedge dy + g(x,y,z)\,dz\wedge dx + h(x,y,z)\,dy\wedge dz). The symbol denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form represents a volume element that can be integrated over a region of space. In general, a -form is an object that may be integrated over a -dimensional manifold, and is homogeneous of degree in the coordinate differentials dx, dy, \ldots. On an -dimensional manifold, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exterior Derivative
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus. If a differential -form is thought of as measuring the flux through an infinitesimal - parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a -parallelotope at each point. Definition The exterior derivative of a differential form of degree (also differential -form, or just -form for brevity here) is a differential form of degree . If is a smooth function (a -form), then the exterior derivative of is the differential of . That is, is the unique -form such that for e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exterior Product
In mathematics, specifically in topology, the interior of a subset of a topological space is the union of all subsets of that are open in . A point that is in the interior of is an interior point of . The interior of is the complement of the closure of the complement of . In this sense interior and closure are dual notions. The exterior of a set is the complement of the closure of ; it consists of the points that are in neither the set nor its boundary. The interior, boundary, and exterior of a subset together partition the whole space into three blocks (or fewer when one or more of these is empty). Definitions Interior point If is a subset of a Euclidean space, then is an interior point of if there exists an open ball centered at which is completely contained in . (This is illustrated in the introductory section to this article.) This definition generalizes to any subset of a metric space with metric : is an interior point of if there exists r > 0, such that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dolbeault Complex
In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let ''M'' be a complex manifold. Then the Dolbeault cohomology groups H^(M, \Complex) depend on a pair of integers ''p'' and ''q'' and are realized as a subquotient of the space of complex differential forms of degree (''p'',''q''). Construction of the cohomology groups Let Ω''p'',''q'' be the vector bundle of complex differential forms of degree (''p'',''q''). In the article on complex forms, the Dolbeault operator is defined as a differential operator on smooth sections :\bar:\Omega^\to\Omega^ Since :\bar^2=0 this operator has some associated cohomology. Specifically, define the cohomology to be the quotient space :H^(M,\Complex)=\frac . Dolbeault cohomology of vector bundles If ''E'' is a holomorphic vector bundle on a complex manifold ''X'', then one can define likewise ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |