HOME
*





CHD3
Chromodomain-helicase-DNA-binding protein 3 is an enzyme that in humans is encoded by the ''CHD3'' gene. Function This gene encodes a member of the CHD family of proteins which are characterized by the presence of chromo (chromatin organization modifier) domains and SNF2-related helicase/ATPase domains. This protein is one of the components of a histone deacetylase complex referred to as the Mi-2/NuRD complex which participates in the remodeling of chromatin by deacetylating histones. Chromatin remodeling is essential for many processes including transcription. Autoantibodies against this protein are found in a subset of patients with dermatomyositis. Three alternatively spliced transcripts encoding different isoforms have been described. Mutations in CHD3 cause a neurodevelopmental syndrome (Snijders Blok-Campeau syndrome) with macrocephaly and impaired speech and language. Interactions CHD3 has been shown to interact with: * HDAC1, * Histone deacetylase 2 and * SERBP1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Snijders Blok-Campeau Syndrome
Snijders Blok-Campeau syndrome is a genetic disorder caused by mutations in the CHD3 gene. It is characterized by impaired intellectual development, macrocephaly, dysarthria and apraxia of speech, and certain distinctive facial features. Snijders Blok-Campeau syndrome is typically a de novo mutation which generally occurs during the early embryonic stages of development or during the formation of the parent's reproductive cells. This allows for prenatal diagnosis. Signs and symptoms Snijders Blok-Campeau syndrome almost always comes with both physical and intellectual disabilities. Those with the condition will typically have trouble in the development of speech and language. Around one half typically have some form of macrocephaly, while around one third show signs of autism or similar conditions. Cause The CHD3 gene is required for chromatin remodeling, a process that regulates gene expression. By allowing for the creation of chromatin, the CHD3 gene affects how tightl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chromodomain Helicase DNA-binding (CHD) Protein Subfamily
Chromodomain helicase DNA-binding (CHD) proteins is a subfamily of ATP-dependent chromatin remodeling complexes (remodelers). All remodelers fall under the umbrella of RNA/DNA helicase superfamily 2. In yeast, CHD complexes are primarily responsible for nucleosome assembly and organization. These complexes play an additional role in multicellular eukaryotes, assisting in chromatin access and nucleosome editing. Functions of CHD subfamily proteins Similar to the imitation switch (ISWI) subfamily of ATP-dependent chromatin remodelers, CHD complexes regulate the assembly and organization of mature nucleosomes along the DNA. Histones are removed during DNA replication; following behind the replisome, histones start to assemble as immature pre-nucleosomes on nascent DNA. With the help of CHD complexes, histone octamers can mature into native nucleosomes. Following nucleosome formation, CHD complexes organize nucleosomes by regularly spacing them apart along the DNA. Additionally, CHDs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HDAC1
Histone deacetylase 1 (HDAC1) is an enzyme that in humans is encoded by the ''HDAC1'' gene. Function Histone acetylation and deacetylation, catalyzed by multisubunit complexes, play a key role in the regulation of eukaryotic gene expression. The protein encoded by this gene belongs to the histone deacetylase/acuc/apha family and is a component of the histone deacetylase complex. It also interacts with retinoblastoma tumor-suppressor protein and this complex is a key element in the control of cell proliferation and differentiation. Together with metastasis-associated protein-2 MTA2, it deacetylates p53 and modulates its effect on cell growth and apoptosis. Model organisms Model organisms have been used in the study of HDAC1 function. A conditional knockout mouse line, called ''Hdac1tm1a(EUCOMM)Wtsi'' was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to inte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Histone Deacetylase 2
Histone deacetylase 2 (HDAC2) is an enzyme that in humans is encoded by the ''HDAC2'' gene. It belongs to the histone deacetylase class of enzymes responsible for the removal of acetyl groups from lysine residues at the N-terminal region of the core histones (H2A, H2B, H3, and H4). As such, it plays an important role in gene expression by facilitating the formation of transcription repressor complexes and for this reason is often considered an important target for cancer therapy. Though the functional role of the class to which HDAC2 belongs has been carefully studied, the mechanism by which HDAC2 interacts with histone deacetylases of other classes has yet to be elucidated. HDAC2 is broadly regulated by protein kinase 2 (CK2) and protein phosphatase 1 (PP1), but biochemical analysis suggests its regulation is more complex (evinced by the coexistence of HDAC1 and HDAC2 in three distinct protein complexes). Essentially, the mechanism by which HDAC2 is regulated is still unclear b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called ''enzymology'' and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties. Enzymes are known to catalyze more than 5,000 biochemical reaction types. Other biocatalysts are catalytic RNA molecules, called ribozymes. Enzymes' specificity comes from their unique three-dimensional structures. Like all catalysts, enzymes increase the reaction ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]