CANFLEX
CANFLEX; the name is derived from its function: CANDU FLEXible fuelling, is an advanced fuel bundle design developed by Atomic Energy of Canada Ltd. (AECL), along with the Korean Atomic Energy Research Institute (KAERI) for use in CANDU design nuclear reactors. The designers claim that it will deliver many benefits to current and future CANDU reactors-using natural uranium or other advanced nuclear fuel cycles. These include greater operating and safety margins, extended plant life, better economics and increased power. The CANFLEX bundle has 43 fuel elements, with two element sizes. It is about 10 cm (four inches) in diameter, 0.5 m (20 inches) long and weighs about 20 kg (44 lbs) and replaces 37-pin standard bundle. It has been designed specifically to increase fuel performance by utilizing two different pin diameters. This reduces the power rating of the hottest pins in the bundles, for the same total bundle power output. Also, the design incorporates special geometry modifi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CANDU
The CANDU (Canada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide ( heavy water) moderator and its use of (originally, natural) uranium fuel. CANDU reactors were first developed in the late 1950s and 1960s by a partnership between Atomic Energy of Canada Limited (AECL), the Hydro-Electric Power Commission of Ontario, Canadian General Electric, and other companies. There have been two major types of CANDU reactors, the original design of around 500 MWe that was intended to be used in multi-reactor installations in large plants, and the rationalized CANDU 6 in the 600 MWe class that is designed to be used in single stand-alone units or in small multi-unit plants. CANDU 6 units were built in Quebec and New Brunswick, as well as Pakistan, Argentina, South Korea, Romania, and China. A single example of a non-CANDU 6 design was sold to India. The multi-unit design was used o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bruce Nuclear Generating Station
Bruce Nuclear Generating Station is a nuclear power station located on the eastern shore of Lake Huron in Ontario, Canada. It occupies 932 ha (2300 acres) of land. The facility derives its name from Bruce Township, the local municipality when the plant was constructed, now Kincardine due to amalgamation. With eight CANDU pressurized heavy-water reactors, it was the world's largest fully operational nuclear generating station by total reactor count and the number of currently operational reactors until 2016, when it was exceeded in nameplate capacity by South Korea's Kori Nuclear Power Plant. The station is the largest employer in Bruce County, with over 4000 workers. Formerly known as the Bruce Nuclear Power Development (BNPD), the facility was constructed in stages between 1970 and 1987 by the provincial Crown corporation, Ontario Hydro. In April 1999 Ontario Hydro was split into 5 component Crown corporations with Ontario Power Generation (OPG) taking over all electrical ge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nuclear Fuel
Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Most nuclear fuels contain heavy fissile actinide elements that are capable of undergoing and sustaining nuclear fission. The three most relevant fissile isotopes are uranium-233, uranium-235 and plutonium-239. When the unstable nuclei of these atoms are hit by a slow-moving neutron, they frequently split, creating two daughter nuclei and two or three more neutrons. In that case, the neutrons released go on to split more nuclei. This creates a self-sustaining chain reaction that is controlled in a nuclear reactor, or uncontrolled in a nuclear weapon. Alternatively, if the nucleus absorbs the neutron without splitting, it creates a heavier nucleus with one additional neutron. The processes involved in mining, refining, purifying, using, and disposing of nuclear fuel are collectively known as the nuclear fuel cycle. Not all typ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AECL
Atomic Energy of Canada Limited (AECL) is a Canadian federal Crown corporation and Canada's largest nuclear science and technology laboratory. AECL developed the CANDU reactor technology starting in the 1950s, and in October 2011 licensed this technology to Candu Energy (a wholly owned subsidiary of SNC-Lavalin). Today AECL develops peaceful applications from nuclear technology through expertise in physics, metallurgy, chemistry, biology and engineering. AECL's activities range from research and development, design and engineering to specialized technology development, waste management and decommissioning. AECL partners with Canadian universities, other Canadian government and private-sector R&D agencies (including Candu Energy), various national laboratories outside Canada, and international agencies such as the IAEA. AECL describes its goal as ensuring that "Canadians and the world receive energy, health, environmental and economic benefits from nuclear science and techno ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
KAERI
The Korea Atomic Energy Research Institute (KAERI) in Daejeon, South Korea was established in 1959 as the sole professional research-oriented institute for nuclear power in South Korea, and has rapidly built a reputation for research and development in various fields. In 1995 KAERI designed and constructed the nation's first multipurpose research reactor, HANARO based on the Canadian MAPLE design. KAERI is dedicated to finding a wide range of uses for atomic energy. As examples, KAERI developed the world's first radiopharmaceutical "Milican injection" for treating liver cancer. KAERI has made significant contributions to the nation's nuclear technology development. After Korea achieved self-reliance in nuclear core technologies, KAERI have transferred highly developed technologies to local industries for practical applications. The Korea Institute of Nuclear Safety (KINS), responsible for supporting the government in regulatory and licensing works, and the Nuclear Environment Tec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nuclear Reactors
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid (water or gas), which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. , the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world. In the early era of nuclear reactors (1940s), a reactor was known as a nuclear pile or atomic pile (so-called because the graphite moderator blocks of the first reactor were placed into a tall pi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Uranium
Natural uranium (NU or Unat) refers to uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from uranium-235, 48.6% from uranium-238, and 49.2% from uranium-234. Natural uranium can be used to fuel both low- and high-power nuclear reactors. Historically, graphite-moderated reactors and heavy water-moderated reactors have been fueled with natural uranium in the pure metal (U) or uranium dioxide (UO2) ceramic forms. However, experimental fuelings with uranium trioxide (UO3) and triuranium octaoxide (U3O8) have shown promise. The 0.72% uranium-235 is not sufficient to produce a self-sustaining critical chain reaction in light water reactors or nuclear weapons; these applications must use enriched uranium. Nuclear weapons take a concentration of 90% uranium-235, and light water reactors require a concentration of roughly 3% uranium- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nuclear Fuel Cycle
The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the ''front end'', which are the preparation of the fuel, steps in the ''service period'' in which the fuel is used during reactor operation, and steps in the ''back end'', which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an ''open fuel cycle'' (or a ''once-through fuel cycle''); if the spent fuel is reprocessed, it is referred to as a ''closed fuel cycle''. Basic concepts Nuclear power relies on fissionable material that can sustain a chain reaction with neutrons. Examples of such materials include uranium and plutonium. Most nuclear reactors use a moderator to lower the kinetic energy of the neutrons and increase the probability that fission will occur. This allows reactors to use material with far lower con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Point Lepreau Nuclear Generating Station
Point Lepreau Nuclear Generating Station is a nuclear power station located 2 km northeast of Point Lepreau, New Brunswick, Canada. The facility was constructed between 1975 and 1983 by NB Power, the provincially owned public utility. The facility is located on the northern shore of the Bay of Fundy and derives its name from the nearby headland situated at the easternmost part of Charlotte County, although the generating station itself is located within Saint John County. The generating station is administratively part of the local service district of Musquash, west of the city of Saint John. The Point Lepreau Nuclear Generating Station is the only nuclear generating facility located in Atlantic Canada and the only operating Canadian nuclear power station located outside of Ontario. The facility consists of a single CANDU nuclear reactor, having a net capacity of 660 MW (705 MW gross). History Construction The construction of a nuclear powered electrical genera ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nuclear Fuel Cycle
The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the ''front end'', which are the preparation of the fuel, steps in the ''service period'' in which the fuel is used during reactor operation, and steps in the ''back end'', which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an ''open fuel cycle'' (or a ''once-through fuel cycle''); if the spent fuel is reprocessed, it is referred to as a ''closed fuel cycle''. Basic concepts Nuclear power relies on fissionable material that can sustain a chain reaction with neutrons. Examples of such materials include uranium and plutonium. Most nuclear reactors use a moderator to lower the kinetic energy of the neutrons and increase the probability that fission will occur. This allows reactors to use material with far lower con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uranium Market
The uranium market, like all commodity markets, has a history of volatility, moving with the standard forces of supply and demand as well as geopolitical pressures. It has also evolved particularities of its own in response to the unique nature and use of uranium. Historically, uranium has been mined in countries willing to export, including Australia and Canada. However, countries now responsible for more than 50% of the world’s uranium production include Kazakhstan, Namibia, Niger, and Uzbekistan. Uranium from mining is used almost entirely as fuel for nuclear power plants. Following the 2011 Fukushima nuclear disaster, the global uranium market remains depressed, with the uranium price falling more than 50%, declining share values, and reduced profitability of uranium producers since March 2011. As a result, uranium companies worldwide have reduced capacity, closed operations and deferred new production. Before uranium is ready for use as nuclear fuel in reactors, it must und ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reprocessed Uranium
Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material separated during reprocessing. Commercial LWR spent nuclear fuel contains on average (excluding cladding) only four percent plutonium, minor actinides and fission products by weight. Despite it often containing more fissile material than natural uranium, reuse of reprocessed uranium has not been common because of low prices in the uranium market of recent decades, and because it contains undesirable isotopes of uranium. Given sufficiently high uranium prices, it is feasible for reprocessed uranium to be re- enriched and reused. A higher enrichment level is required to compensate for the 236U which is lighter than 238U and therefore concentrates in the enriched product. As enrichment concentrates lighter isotopes on the "enriched" side an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |