Brunn–Minkowski Theorem
   HOME
*





Brunn–Minkowski Theorem
In mathematics, the Brunn–Minkowski theorem (or Brunn–Minkowski inequality) is an inequality relating the volumes (or more generally Lebesgue measures) of compact subsets of Euclidean space. The original version of the Brunn–Minkowski theorem (Hermann Brunn 1887; Hermann Minkowski 1896) applied to convex sets; the generalization to compact nonconvex sets stated here is due to Lazar Lyusternik (1935). Statement Let ''n'' ≥ 1 and let ''μ'' denote the Lebesgue measure on R''n''. Let ''A'' and ''B'' be two nonempty compact subsets of R''n''. Then the following inequality holds: : \mu (A + B) \geq mu (A) + mu (B), where ''A'' + ''B'' denotes the Minkowski sum: :A + B := \. The theorem is also true in the setting where A, B, A + B are only assumed to be measurable and non-empty.Gardner, Richard J. (2002). "The Brunn–Minkowski inequality". Bull. Amer. Math. Soc. (N.S.) 39 (3): pp. 355–405 (electronic). doi:10.1090/S0273-0979-02-00941-2. . Multiplicative version T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Concentration Of Measure
In mathematics, concentration of measure (about a median) is a principle that is applied in measure theory, probability and combinatorics, and has consequences for other fields such as Banach space theory. Informally, it states that "A random variable that depends in a Lipschitz way on many independent variables (but not too much on any of them) is essentially constant". The concentration of measure phenomenon was put forth in the early 1970s by Vitali Milman in his works on the local theory of Banach spaces, extending an idea going back to the work of Paul Lévy. It was further developed in the works of Milman and Gromov, Maurey, Pisier, Schechtman, Talagrand, Ledoux, and others. The general setting Let (X, d) be a metric space with a measure \mu on the Borel sets with \mu(X) = 1. Let :\alpha(\epsilon) = \sup \left\, where :A_\epsilon = \left\ is the \epsilon-''extension'' (also called \epsilon-fattening in the context of the Hausdorff distance) of a set A. The funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Measure Theory
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rolf Schneider
Rolf Georg Schneider (born 17 March 1940, Hagen, Germany) is a mathematician. Schneider is a professor emeritus at the University of Freiburg. His main research interests are convex geometry and stochastic geometry. Career Schneider completed his PhD 1967 with Ruth Moufang at Goethe University Frankfurt with a thesis titled (''Elliptisch gekrümmte Hyperflächen in der affinen Differentialgeometrie im Großen''). In 1969, he got his Habilitation in Bochum. In 1970, he was appointed as a full professor at TU Berlin and in 1974 at the University of Freiburg. He became a Fellow of the American Mathematical Society in 2014 and received an honorary doctorate of the University of Salzburg The University of Salzburg (german: Universität Salzburg), also known as the Paris Lodron University of Salzburg (''Paris-Lodron-Universität Salzburg'', PLUS), is an Austrian public university in Salzburg municipality, Salzburg state, named af ... in the same year. Research Rolf Schneider is k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heinrich Guggenheimer
Heinrich Walter Guggenheimer (July 21, 1924 – March 4, 2021) was a German-born Swiss-American mathematician who has contributed to knowledge in differential geometry, topology, algebraic geometry, and convexity. He has also contributed volumes on Jewish sacred literature. Heinrich Guggenheimer was born in Nuremberg, Germany. He is the son of Marguerite Bloch and the Physicist Dr. Siegfried Guggenheimer. He studied in Zurich, Switzerland at the Eidgenössiche Technische Hochschule, receiving his diploma in 1947 and a D.Sc. in 1951. His dissertation was titled "On complex analytic manifolds with Kahler metric". It was published in Commentarii Mathematici Helvetici:25:257–97 (in German). Guggenheimer began his teaching career at Hebrew University as lecturer 1954–56. He was a professor at Bar Ilan University 1956–59. In 1959 he immigrated to the United States, becoming a naturalized citizen in 1965. Washington State University was his first American post, where he was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vitale's Random Brunn–Minkowski Inequality
In mathematics, Vitale's random Brunn–Minkowski inequality is a theorem due to Richard Vitale that generalizes the classical Brunn–Minkowski inequality for compact subsets of ''n''-dimensional Euclidean space R''n'' to random compact sets. Statement of the inequality Let ''X'' be a random compact set in R''n''; that is, a Borel– measurable function from some probability space (Ω, Σ, Pr) to the space of non-empty, compact subsets of R''n'' equipped with the Hausdorff metric. A random vector In probability, and statistics, a multivariate random variable or random vector is a list of mathematical variables each of whose value is unknown, either because the value has not yet occurred or because there is imperfect knowledge of its value ... ''V'' : Ω → R''n'' is called a selection of ''X'' if Pr(''V'' ∈ ''X'') = 1. If ''K'' is a non-empty, compact subset of R''n'', let :\, K \, = \max \le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Milman's Reverse Brunn–Minkowski Inequality
In mathematics, particularly, in asymptotic convex geometry, Milman's reverse Brunn–Minkowski inequality is a result due to Vitali Milman that provides a reverse inequality to the famous Brunn–Minkowski inequality for convex bodies in ''n''-dimensional Euclidean space R''n''. Namely, it bounds the volume of the Minkowski sum of two bodies from above in terms of the volumes of the bodies. Introduction Let ''K'' and ''L'' be convex bodies in R''n''. The Brunn–Minkowski inequality states that : \mathrm(K+L)^ \geq \mathrm(K)^ + \mathrm(L)^~, where vol denotes ''n''-dimensional Lebesgue measure and the + on the left-hand side denotes Minkowski addition. In general, no reverse bound is possible, since one can find convex bodies ''K'' and ''L'' of unit volume so that the volume of their Minkowski sum is arbitrarily large. Milman's theorem states that one can replace one of the bodies by its image under a properly chosen volume-preserving linear map so that the left-ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isoperimetric Inequality
In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In n-dimensional space \R^n the inequality lower bounds the surface area or perimeter \operatorname(S) of a set S\subset\R^n by its volume \operatorname(S), :\operatorname(S)\geq n \operatorname(S)^ \, \operatorname(B_1)^, where B_1\subset\R^n is a unit sphere. The equality holds only when S is a sphere in \R^n. On a plane, i.e. when n=2, the isoperimetric inequality relates the square of the circumference of a closed curve and the area of a plane region it encloses. '' Isoperimetric'' literally means "having the same perimeter". Specifically in \R ^2, the isoperimetric inequality states, for the length ''L'' of a closed curve and the area ''A'' of the planar region that it encloses, that : L^2 \ge 4\pi A, and that equality holds if and only if the curve is a circle. The isoperimetric problem is to determine a plane figure of the largest possible area whose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brunn–Minkowski Theorem
In mathematics, the Brunn–Minkowski theorem (or Brunn–Minkowski inequality) is an inequality relating the volumes (or more generally Lebesgue measures) of compact subsets of Euclidean space. The original version of the Brunn–Minkowski theorem (Hermann Brunn 1887; Hermann Minkowski 1896) applied to convex sets; the generalization to compact nonconvex sets stated here is due to Lazar Lyusternik (1935). Statement Let ''n'' ≥ 1 and let ''μ'' denote the Lebesgue measure on R''n''. Let ''A'' and ''B'' be two nonempty compact subsets of R''n''. Then the following inequality holds: : \mu (A + B) \geq mu (A) + mu (B), where ''A'' + ''B'' denotes the Minkowski sum: :A + B := \. The theorem is also true in the setting where A, B, A + B are only assumed to be measurable and non-empty.Gardner, Richard J. (2002). "The Brunn–Minkowski inequality". Bull. Amer. Math. Soc. (N.S.) 39 (3): pp. 355–405 (electronic). doi:10.1090/S0273-0979-02-00941-2. . Multiplicative version T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scaling (geometry)
In affine geometry, uniform scaling (or isotropic scaling) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a ''scale factor'' that is the same in all directions. The result of uniform scaling is similarity (geometry), similar (in the geometric sense) to the original. A scale factor of 1 is normally allowed, so that congruence (geometry), congruent shapes are also classed as similar. Uniform scaling happens, for example, when enlarging or reducing a photograph, or when creating a scale model of a building, car, airplane, etc. More general is scaling with a separate scale factor for each axis direction. Non-uniform scaling (anisotropic scaling) is obtained when at least one of the scaling factors is different from the others; a special case is directional scaling or stretching (in one direction). Non-uniform scaling changes the shape of the object; e.g. a square may change into a rectangle, or into a parallelogram if the sides of the squar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Translation (geometry)
In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry. As a function If \mathbf is a fixed vector, known as the ''translation vector'', and \mathbf is the initial position of some object, then the translation function T_ will work as T_(\mathbf)=\mathbf+\mathbf. If T is a translation, then the image of a subset A under the function T is the translate of A by T . The translate of A by T_ is often written A+\mathbf . Horizontal and vertical translations In geometry, a vertical translation (also known as vertical shift) is a translation of a geometric object in a direction parallel to the vertical axis of the Cartesian coordinate system. Often, vertical translations a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homothetic Transformation
In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point ''S'' called its ''center'' and a nonzero number ''k'' called its ''ratio'', which sends point X to a point X' by the rule : \overrightarrow=k\overrightarrow for a fixed number k\ne 0. Using position vectors: :\mathbf x'=\mathbf s + k(\mathbf x -\mathbf s). In case of S=O (Origin): :\mathbf x'=k\mathbf x, which is a uniform scaling and shows the meaning of special choices for k: :for k=1 one gets the ''identity'' mapping, :for k=-1 one gets the ''reflection'' at the center, For 1/k one gets the ''inverse'' mapping defined by k. In Euclidean geometry homotheties are the similarities that fix a point and either preserve (if k>0) or reverse (if k<0) the direction of all vectors. Together with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]