Born Series
   HOME
*





Born Series
The Born series is the expansion of different scattering quantities in quantum scattering theory in the powers of the interaction potential V (more precisely in powers of G_0 V, where G_0 is the free particle Green's operator). It is closely related to Born approximation, which is the first order term of the Born series. The series can formally be understood as power series introducing the coupling constant by substitution V \to \lambda V . The speed of convergence and radius of convergence of the Born series are related to eigenvalues of the operator G_0 V . In general the first few terms of the Born series are good approximation to the expanded quantity for "weak" interaction V and large collision energy. Born series for scattering states The Born series for the scattering states reads : , \psi\rangle = , \phi \rangle + G_0(E) V , \phi\rangle + _0(E) V2 , \phi\rangle + _0(E) V3 , \phi\rangle + \dots It can be derived by iterating the Lippmann–Schwinger equation : , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Green's Function
In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if \operatorname is the linear differential operator, then * the Green's function G is the solution of the equation \operatorname G = \delta, where \delta is Dirac's delta function; * the solution of the initial-value problem \operatorname y = f is the convolution (G \ast f). Through the superposition principle, given a linear ordinary differential equation (ODE), \operatorname y = f, one can first solve \operatorname G = \delta_s, for each , and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of . Green's functions are named after the British mathematician George Green, who first developed the concept in the 1820s. In the modern study of linear partial differential equations, Green's functions are s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Born Approximation
Generally in scattering theory and in particular in quantum mechanics, the Born approximation consists of taking the incident field in place of the total field as the driving field at each point in the scatterer. The Born approximation is named after Max Born who proposed this approximation in early days of quantum theory development. It is the perturbation method applied to scattering by an extended body. It is accurate if the scattered field is small compared to the incident field on the scatterer. For example, the scattering of radio waves by a light styrofoam column can be approximated by assuming that each part of the plastic is polarized by the same electric field that would be present at that point without the column, and then calculating the scattering as a radiation integral over that polarization distribution. Born approximation to the Lippmann–Schwinger equation The Lippmann–Schwinger equation for the scattering state \vert\rangle with a momentum p and out-going ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Series
In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a constant. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, ''c'' (the ''center'' of the series) is equal to zero, for instance when considering a Maclaurin series. In such cases, the power series takes the simpler form \sum_^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots. Beyond their role in mathematical analysis, power series also occur in combinatorics as generating functions (a kind of formal power series) and in electronic engineering (under the name of the Z-transform). The familiar decimal notation for real numbers can also be viewed as an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coupling Constant
In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies (i.e. the electric charge for electrostatic and the mass for Newtonian gravity) divided by the distance squared, r^2, between the bodies; thus: G in F=G m_1 m_2/r^2 for Newtonian gravity and k_\text in F=k_\textq_1 q_2/r^2 for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers. A modern and more general definition uses the Lagrangian \mathcal (or equivalently the Hamiltonian \mathcal) of a system. Usually, \mathcal (or \mathcal) of a system describing an interaction can be separated into a ''kinetic part'' T and an ''interaction part'' V: \mathcal=T-V (or \mathcal=T+V). In field theory, V always contains 3 fields te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radius Of Convergence
In mathematics, the radius of convergence of a power series is the radius of the largest disk at the center of the series in which the series converges. It is either a non-negative real number or \infty. When it is positive, the power series converges absolutely and uniformly on compact sets inside the open disk of radius equal to the radius of convergence, and it is the Taylor series of the analytic function to which it converges. In case of multiple singularities of a function (singularities are those values of the argument for which the function is not defined), the radius of convergence is the shortest or minimum of all the respective distances (which are all non-negative numbers) calculated from the center of the disk of convergence to the respective singularities of the function. Definition For a power series ''f'' defined as: :f(z) = \sum_^\infty c_n (z-a)^n, where *''a'' is a complex constant, the center of the disk of convergence, *''c''''n'' is the ''n''-th comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalues
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lippmann–Schwinger Equation
The Lippmann–Schwinger equation (named after Bernard Lippmann and Julian Schwinger) is one of the most used equations to describe particle collisions – or, more precisely, scattering – in quantum mechanics. It may be used in scattering of molecules, atoms, neutrons, photons or any other particles and is important mainly in atomic, molecular, and optical physics, nuclear physics and particle physics, but also for seismic scattering problems in geophysics. It relates the scattered wave function with the interaction that produces the scattering (the scattering potential) and therefore allows calculation of the relevant experimental parameters (scattering amplitude and cross sections). The most fundamental equation to describe any quantum phenomenon, including scattering, is the Schrödinger equation. In physical problems, this differential equation must be solved with the input of an additional set of initial and/or boundary conditions for the specific physical system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Series
In mathematics, a geometric series is the sum of an infinite number of terms that have a constant ratio between successive terms. For example, the series :\frac \,+\, \frac \,+\, \frac \,+\, \frac \,+\, \cdots is geometric, because each successive term can be obtained by multiplying the previous term by 1/2. In general, a geometric series is written as a + ar + ar^2 + ar^3 + ..., where a is the coefficient of each term and r is the common ratio between adjacent terms. The geometric series had an important role in the early development of calculus, is used throughout mathematics, and can serve as an introduction to frequently used mathematical tools such as the Taylor series, the complex Fourier series, and the matrix exponential. The name geometric series indicates each term is the geometric mean of its two neighboring terms, similar to how the name arithmetic series indicates each term is the arithmetic mean of its two neighboring terms. The sequence of geometric series term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T-matrix Method
The Transition Matrix Method (T-matrix method, TMM) is a computational technique of light scattering by nonspherical particles originally formulated by Peter C. Waterman (1928–2012) in 1965. The technique is also known as null field method and extended boundary condition method (EBCM). In the method, matrix elements are obtained by matching boundary conditions for solutions of Maxwell equations. It has been greatly extended to incorporate diverse types of linear media occupying the region enclosing the scatterer. T-matrix method proves to be highly efficient and has been widely-used in computing electromagnetic scattering of single and compound particles. Definition of the T-matrix The incident and scattered electric field are expanded into spherical vector wave functions (SVWF), which are also encountered in Mie scattering. They are the fundamental solutions of the vector Helmholtz equation and can be generated from the scalar fundamental solutions in spherical coordinates, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scattering Amplitude
In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process.''Quantum Mechanics: Concepts and Applications''
By Nouredine Zettili, 2nd edition, page 623. Paperback 688 pages January 2009 The plane wave is described by the : \psi(\mathbf) = e^ + f(\theta)\frac \;, where \mathbf\equiv(x,y,z) is the position vector; r\equiv, \mathbf, ; e^ is the incoming plane wave with the