Bony–Brezis Theorem
   HOME





Bony–Brezis Theorem
In mathematics, the Bony–Brezis theorem, due to the French mathematicians Jean-Michel Bony and Haïm Brezis, gives necessary and sufficient conditions for a closed subset of a manifold to be invariant under the flow defined by a vector field, namely at each point of the closed set the vector field must have non-positive inner product with any exterior normal vector to the set. A vector is an ''exterior normal'' at a point of the closed set if there is a real-valued continuously differentiable function maximized locally at the point with that vector as its derivative at the point. If the closed subset is a smooth submanifold with boundary, the condition states that the vector field should not point outside the subset at boundary points. The generalization to non-smooth subsets is important in the theory of partial differential equations. The theorem had in fact been previously discovered by Mitio Nagumo in 1942 and is also known as the Nagumo theorem. Statement Let ''F'' be clo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how is thought of as an unknown number solving, e.g., an algebraic equation like . However, it is usually impossible to write down explicit formulae for solutions of partial differential equations. There is correspondingly a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity and stability. Among the many open questions are the existence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamical Systems
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, fluid dynamics, the flow of water in a pipe, the Brownian motion, random motion of particles in the air, and population dynamics, the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real number, real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a Set (mathematics), set, without the need of a Differentiability, smooth space-time structure defined on it. At any given time, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinary Differential Equations
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable. As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. The term "ordinary" is used in contrast with ''partial'' differential equations (PDEs) which may be with respect to one independent variable, and, less commonly, in contrast with ''stochastic'' differential equations (SDEs) where the progression is random. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where a_0(x),\ldots,a_n(x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y',\ldots, y^ are the successive derivatives of the unknown function y of the variable x. Among ord ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Barrier Certificate
A barrier certificate or barrier function is used to prove that a given region is forward invariant for a given ordinary differential equation or hybrid dynamical system. That is, a barrier function can be used to show that if a solution starts in a given set, then it cannot leave that set. Showing that a set is forward invariant is an aspect of ''safety'', which is the property where a system is guaranteed to avoid obstacles specified as an ''unsafe set''. Barrier certificates play the analogical role for safety to the role of Lyapunov functions for stability. For every ordinary differential equation that robustly fulfills a safety property of a certain type there is a corresponding barrier certificate. History The first result in the field of barrier certificates was the Nagumo theorem by Mitio Nagumo in 1942. . English translation in The term "barrier certificate" was introduced later based on similar concept in convex optimization called barrier functions. Barrier ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

One-sided Derivatives
In calculus, the notions of one-sided differentiability and semi-differentiability of a real-valued function ''f'' of a real variable are weaker than differentiability. Specifically, the function ''f'' is said to be right differentiable at a point ''a'' if, roughly speaking, a derivative can be defined as the function's argument ''x'' moves to ''a'' from the right, and left differentiable at ''a'' if the derivative can be defined as ''x'' moves to ''a'' from the left. One-dimensional case In mathematics, a left derivative and a right derivative are derivatives (rates of change of a function) defined for movement in one direction only (left or right; that is, to lower or higher values) by the argument of a function. Definitions Let ''f'' denote a real-valued function defined on a subset ''I'' of the real numbers. If is a limit point of   and the one-sided limit :\partial_+f(a):=\lim_\frac exists as a real number, then ''f'' is called right differentiable at ''a'' and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Curve
In mathematics, an integral curve is a parametric curve that represents a specific solution to an ordinary differential equation or system of equations. Name Integral curves are known by various other names, depending on the nature and interpretation of the differential equation or vector field. In physics, integral curves for an electric field or magnetic field are known as '' field lines'', and integral curves for the velocity field of a fluid are known as ''streamlines''. In dynamical systems, the integral curves for a differential equation that governs a system are referred to as ''trajectories'' or ''orbits''. Definition Suppose that is a static vector field, that is, a vector-valued function with Cartesian coordinates , and that is a parametric curve with Cartesian coordinates . Then is an integral curve of if it is a solution of the autonomous system of ordinary differential equations, \begin \frac &= F_1(x_1,\ldots,x_n) \\ &\;\, \vdots \\ \frac &= F_n(x_1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lipschitz Continuous
In mathematical analysis, Lipschitz continuity, named after Germany, German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for function (mathematics), functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the ''Lipschitz constant'' of the function (and is related to the ''modulus of continuity, modulus of uniform continuity''). For instance, every function that is defined on an interval and has a bounded first derivative is Lipschitz continuous. In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mitio Nagumo
Mitio (Michio) Nagumo (; May 7, 1905 – February 6, 1995) was a Japanese mathematician, who specialized in the theory of differential equations. He gave the first necessary and sufficient condition for positive invariance of closed sets under the flow induced by ordinary differential equations ( Nagumo/Bony-Brezis theorem). Biography Mitio Nagumo graduated from the Department of Mathematics at the Imperial University of Tokyo in March 1928. In March 1931 he was appointed Lecturer in the Faculty of Technology at the Imperial University of Kyushu. In February 1932 he left Japan for an academic visit to Göttingen, where he remained for two years. Upon his return from Göttingen in March 1934, he was appointed Lecturer in the Department of Mathematics at the Imperial University of Osaka, and was promoted to Associate Professor in September that year, becoming Professor in the Faculty of Science in March 1936. In March 1937 Nagumo received a Doctor of Science degree from t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Submanifold
In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions. Formal definition In the following we assume all manifolds are differentiable manifolds of class C^r for a fixed r\geq 1, and all morphisms are differentiable of class C^r. Immersed submanifolds An immersed submanifold of a manifold M is the image S of an immersion map f: N\rightarrow M; in general this image will not be a submanifold as a subset, and an immersion map need not even be injective (one-to-one) – it can have self-intersections. More narrowly, one can require that the map f: N\rightarrow M be an injection (one-to-one), in which we call it an injective immersion, and define an immersed submanifold to be the image subset S together with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean-Michel Bony
Jean-Michel Bony (; born 1 February 1942 in Paris) is a French mathematician, specializing in mathematical analysis. He is known for his work on microlocal analysis and pseudodifferential operators. Education and career Bony completed his undergraduate and graduate studies at the École Normale Supérieure, where he received his Ph.D. in 1972 with thesis advisor Gustave Choquet. Bony became a professor at the University of Paris-Sud and is now a professor at the École Polytechnique. His doctoral students include Jean-Yves Chemin. Research Bony's research deals with microlocal analysis, partial differential equations and potential theory. In 1981 he published important results on paradifferential operators, extending the theory of pseudifferential operators published by Ronald Coifman and Yves Meyer in 1979. Bony applied his theory to the propagation of singularities in solutions of semilinear wave equations. Recognition In 1980, Bony received the Prix Paul Doistau–Ém ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differentiable Function
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in its domain. A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If is an interior point in the domain of a function , then is said to be ''differentiable at'' if the derivative f'(x_0) exists. In other words, the graph of has a non-vertical tangent line at the point . is said to be differentiable on if it is differentiable at every point of . is said to be ''continuously differentiable'' if its derivative is also a continuous function over the domain of the function f. Generally speaking, is said to be of class if its first k derivatives f^(x), f^(x), \ldots, f^(x) exist and are continuous over the domain of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]