Bochner–Riesz Mean
   HOME
*





Bochner–Riesz Mean
The Bochner–Riesz mean is a summability method often used in harmonic analysis when considering convergence of Fourier series and Fourier integrals. It was introduced by Salomon Bochner as a modification of the Riesz mean. Definition Define :(\xi)_+ = \begin \xi, & \mbox \xi > 0 \\ 0, & \mbox. \end Let f be a periodic function, thought of as being on the n-torus, \mathbb^n, and having Fourier coefficients \hat(k) for k \in \mathbb^n. Then the Bochner–Riesz means of complex order \delta, B_R^\delta f of (where R > 0 and \mbox(\delta) > 0) are defined as :B_R^\delta f(\theta) = \underset \left( 1- \frac \right)_+^\delta \hat(k) e^. Analogously, for a function f on \mathbb^n with Fourier transform \hat(\xi), the Bochner–Riesz means of complex order \delta, S_R^\delta f (where R > 0 and \mbox(\delta) > 0) are defined as :S_R^\delta f(x) = \int_ \left(1 - \frac \right)_+^\delta \hat(\xi) e^\,d\xi. Application to convolution operators For \delta > 0 and n=1, S_R^\delta and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Summability Method
In mathematics, a divergent series is an infinite series that is not Convergent series, convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit of a sequence, limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series (mathematics), harmonic series :1 + \frac + \frac + \frac + \frac + \cdots =\sum_^\infty\frac. The divergence of the harmonic series Harmonic series (mathematics)#Divergence, was proven by the medieval mathematician Nicole Oresme. In specialized mathematical contexts, values can be objectively assigned to certain series whose sequences of partial sums diverge, in order to make meaning of the divergence of the series. A ''summability method'' or ''summation method'' is a part ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Converge In Norm
Converge may refer to: * Converge (band), American hardcore punk band * Converge (Baptist denomination), American national evangelical Baptist body * Limit (mathematics) * Converge ICT, internet service provider in the Philippines *CONVERGE CFD software, created by Convergent Science See also * Comverge, a company that provides software, hardware, and services to electric utilities * Convergence (other) * Convergent (other) Convergent is an adjective for things that converge. It is commonly used in mathematics and may refer to: *Convergent boundary, a type of plate tectonic boundary * Convergent (continued fraction) * Convergent evolution * Convergent series Converg ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marcel Riesz
Marcel Riesz ( hu, Riesz Marcell ; 16 November 1886 – 4 September 1969) was a Hungarian mathematician, known for work on summation methods, potential theory, and other parts of analysis, as well as number theory, partial differential equations, and Clifford algebras. He spent most of his career in Lund (Sweden). Marcel is the younger brother of Frigyes Riesz, who was also an important mathematician and at times they worked together (see F. and M. Riesz theorem). Biography Marcel Riesz was born in Győr, Austria-Hungary; he was the younger brother of the mathematician Frigyes Riesz. He obtained his PhD at Eötvös Loránd University under the supervision of Lipót Fejér. In 1911, he moved to Sweden upon the invitation of Gösta Mittag-Leffler. From 1911 to 1925 he taught at ''Stockholms högskola'' (now Stockholm University). From 1926 to 1952 he was professor at Lund University. After retiring, he spent 10 years at universities in the United States. He returned to Lund in 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Transform
In mathematics and in signal processing, the Hilbert transform is a specific linear operator that takes a function, of a real variable and produces another function of a real variable . This linear operator is given by convolution with the function 1/(\pi t) (see ). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° ( radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see ). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal . The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions. Definition The Hilbert transform of can be thought of as the convolution of with the function , known as the Cauchy kernel. Because is not integrable across , the integ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Multiplier
In Fourier analysis, a multiplier operator is a type of linear operator, or transformation of functions. These operators act on a function by altering its Fourier transform. Specifically they multiply the Fourier transform of a function by a specified function known as the multiplier or symbol. Occasionally, the term ''multiplier operator'' itself is shortened simply to ''multiplier''. In simple terms, the multiplier reshapes the frequencies involved in any function. This class of operators turns out to be broad: general theory shows that a translation-invariant operator on a group which obeys some (very mild) regularity conditions can be expressed as a multiplier operator, and conversely. Many familiar operators, such as translations and differentiation, are multiplier operators, although there are many more complicated examples such as the Hilbert transform. In signal processing, a multiplier operator is called a "filter", and the multiplier is the filter's frequency response ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Uniform Boundedness Principle
In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm. The theorem was first published in 1927 by Stefan Banach and Hugo Steinhaus, but it was also proven independently by Hans Hahn. Theorem The completeness of X enables the following short proof, using the Baire category theorem. There are also simple proofs not using the Baire theorem . Corollaries The above corollary does claim that T_n converges to T in operator norm, that is, uniformly on bounded sets. However, since \left\ is bounded in operator norm, and the limit operator T is continuous ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Charles Fefferman
Charles Louis Fefferman (born April 18, 1949) is an American mathematician at Princeton University, where he is currently the Herbert E. Jones, Jr. '43 University Professor of Mathematics. He was awarded the Fields Medal in 1978 for his contributions to mathematical analysis. Early life and education Fefferman was born to a Jewish family, in Washington, DC. Fefferman was a child prodigy. Fefferman entered the University of Maryland at age 14, and had written his first scientific paper by the age of 15. He graduated with degrees in math and physics at 17, and earned his PhD in mathematics three years later from Princeton University, under Elias Stein. His doctoral dissertation was titled "Inequalities for strongly singular convolution operators". Fefferman achieved a full professorship at the University of Chicago at the age of 22, making him the youngest full professor ever appointed in the United States. Career At the age of 25, he returned to Princeton as a full professor, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Almost Everywhere Convergence
In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared. Definition Suppose that X is a set and Y is a topological space, such as the real or complex numbers or a metric space, for example. A net or sequence of functions \left(f_n\right) all having the same domain X and codomain Y is said to converge pointwise to a given function f : X \to Y often written as \lim_ f_n = f\ \mbox if (and only if) \lim_ f_n(x) = f(x) \text x \text f. The function f is said to be the pointwise limit function of the \left(f_n\right). Sometimes, authors use the term bounded pointwise convergence when there is a constant C such that \forall n,x,\;, f_n(x), .


Properties

This concept is often contrasted with

picture info

Harmonic Analysis
Harmonic analysis is a branch of mathematics concerned with the representation of Function (mathematics), functions or signals as the Superposition principle, superposition of basic waves, and the study of and generalization of the notions of Fourier series and Fourier transforms (i.e. an extended form of Fourier analysis). In the past two centuries, it has become a vast subject with applications in areas as diverse as number theory, representation theory, signal processing, quantum mechanics, tidal analysis and neuroscience. The term "harmonics" originated as the Ancient Greek word ''harmonikos'', meaning "skilled in music". In physical eigenvalue problems, it began to mean waves whose frequencies are Multiple (mathematics), integer multiples of one another, as are the frequencies of the Harmonic series (music), harmonics of music notes, but the term has been generalized beyond its original meaning. The classical Fourier transform on R''n'' is still an area of ongoing research, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mollifier
In mathematics, mollifiers (also known as ''approximations to the identity'') are smooth functions with special properties, used for example in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. Intuitively, given a function which is rather irregular, by convolving it with a mollifier the function gets "mollified", that is, its sharp features are smoothed, while still remaining close to the original nonsmooth (generalized) function. They are also known as Friedrichs mollifiers after Kurt Otto Friedrichs, who introduced them. Historical notes Mollifiers were introduced by Kurt Otto Friedrichs in his paper , which is considered a watershed in the modern theory of partial differential equations.See the commentary of Peter Lax on the paper in . The name of this mathematical object had a curious genesis, and Peter Lax tells the whole story in his commentary on that paper published in Friedrichs' "''Selec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convolution
In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution'' refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The choice of which function is reflected and shifted before the integral does not change the integral result (see #Properties, commutativity). The integral is evaluated for all values of shift, producing the convolution function. Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution (f*g) differs from cross-correlation (f \star g) only in that either or is reflected about the y-axis in convolution; thus it is a cross-c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]