Binomial Transform
   HOME
*





Binomial Transform
In combinatorics, the binomial transform is a sequence transformation (i.e., a transform of a sequence) that computes its forward differences. It is closely related to the Euler transform, which is the result of applying the binomial transform to the sequence associated with its ordinary generating function. Definition The binomial transform, ''T'', of a sequence, , is the sequence defined by :s_n = \sum_^n (-1)^k a_k. Formally, one may write :s_n = (Ta)_n = \sum_^n T_ a_k for the transformation, where ''T'' is an infinite-dimensional operator with matrix elements ''T''''nk''. The transform is an involution, that is, :TT = 1 or, using index notation, :\sum_^\infty T_T_ = \delta_ where \delta_ is the Kronecker delta. The original series can be regained by :a_n=\sum_^n (-1)^k s_k. The binomial transform of a sequence is just the ''n''th forward differences of the sequence, with odd differences carrying a negative sign, namely: :\begin s_0 &= a_0 \\ s_1 &= - (\Delta a) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Analytic
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical branches in mathematics, with roots in the 18th century and just prior. Important mathematicians associated with complex nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The Art Of Computer Programming
''The Art of Computer Programming'' (''TAOCP'') is a comprehensive monograph written by the computer scientist Donald Knuth presenting programming algorithms and their analysis. Volumes 1–5 are intended to represent the central core of computer programming for sequential machines. When Knuth began the project in 1962, he originally conceived of it as a single book with twelve chapters. The first three volumes of what was then expected to be a seven-volume set were published in 1968, 1969, and 1973. Work began in earnest on Volume 4 in 1973, but was suspended in 1977 for work on typesetting prompted by the second edition of Volume 2. Writing of the final copy of Volume 4A began in longhand in 2001, and the first online pre-fascicle, 2A, appeared later in 2001. The first published installment of Volume 4 appeared in paperback as Fascicle 2 in 2005. The hardback Volume 4A, combining Volume 4, Fascicles 0–4, was published in 2011. Volume 4, Fascicle 6 ("Satisfiability") was rel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Factorial And Binomial Topics
{{Short description, none This is a list of factorial and binomial topics in mathematics. See also binomial (other). * Abel's binomial theorem * Alternating factorial *Antichain *Beta function *Bhargava factorial *Binomial coefficient **Pascal's triangle *Binomial distribution *Binomial proportion confidence interval *Binomial-QMF (Daubechies wavelet filters) *Binomial series *Binomial theorem *Binomial transform *Binomial type *Carlson's theorem *Catalan number **Fuss–Catalan number * Central binomial coefficient *Combination *Combinatorial number system *De Polignac's formula *Difference operator *Difference polynomials *Digamma function *Egorychev method * Erdős–Ko–Rado theorem *Euler–Mascheroni constant *Faà di Bruno's formula *Factorial *Factorial moment *Factorial number system *Factorial prime *Gamma distribution *Gamma function *Gaussian binomial coefficient *Gould's sequence *Hyperfactorial *Hypergeometric distribution * Hypergeometric function identities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Binomial QMF
A binomial QMF – properly an orthonormal binomial quadrature mirror filter – is an orthogonal wavelet developed in 1990. The binomial QMF bank with perfect reconstruction (PR) was designed by Ali Akansu, and published in 1990, using the family of binomial polynomials for subband decomposition of discrete-time signals. Akansu and his fellow authors also showed that these binomial-QMF filters are identical to the wavelet filters designed independently by Ingrid Daubechies from compactly supported orthonormal wavelet transform perspective in 1988 (Daubechies wavelet). It was an extension of Akansu's prior work on Binomial coefficient In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the t ... and Hermite polynomials wherein he developed the Modified Hermite Transformation (MHT) in 1987. Lat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler Summation
In the mathematics of convergent series, convergent and divergent series, Euler summation is a summation method. That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σ''a''''n'', if its Euler transform converges to a sum, then that sum is called the Euler sum of the original series. As well as being used to define values for divergent series, Euler summation can be used to speed the convergence of series. Euler summation can be generalized into a family of methods denoted (E, ''q''), where ''q'' ≥ 0. The (E, 1) sum is the ordinary Euler sum. All of these methods are strictly weaker than Borel summation; for ''q'' > 0 they are incomparable with Abel summation. Definition For some value ''y'' we may define the Euler sum (if it converges for that value of ''y'') corresponding to a particular formal summation as: : _\, \sum_^\infty a_j := \sum_^\infty \frac \sum_^i \binom y^ a_j . If a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stirling Transform
In combinatorial mathematics, the Stirling transform of a sequence of numbers is the sequence given by :b_n=\sum_^n \left\ a_k, where \left\ is the Stirling number of the second kind, also denoted ''S''(''n'',''k'') (with a capital ''S''), which is the number of partitions of a set of size ''n'' into ''k'' parts. The inverse transform is :a_n=\sum_^n s(n,k) b_k, where ''s''(''n'',''k'') (with a lower-case ''s'') is a Stirling number of the first kind. Berstein and Sloane (cited below) state "If ''a''''n'' is the number of objects in some class with points labeled 1, 2, ..., ''n'' (with all labels distinct, i.e. ordinary labeled structures), then ''b''''n'' is the number of objects with points labeled 1, 2, ..., ''n'' (with repetitions allowed)." If :f(x) = \sum_^\infty x^n is a formal power series, and :g(x) = \sum_^\infty x^n with ''a''''n'' and ''b''''n'' as above, then :g(x) = f(e^x-1).\, Likewise, the inverse transform leads to the generating function identity : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Möbius Transform
Moebius, Möbius or Mobius may refer to: People * August Ferdinand Möbius (1790–1868), German mathematician and astronomer * Theodor Möbius (1821–1890), German philologist * Karl Möbius (1825–1908), German zoologist and ecologist * Paul Julius Möbius (1853–1907), German neurologist * Dieter Moebius (1944–2015), German/Swiss musician * Mark Mobius (born 1936), emerging markets investments pioneer * Jean Giraud (1938–2012), French comics artist who used the pseudonym Mœbius Fictional characters * Mobius M. Mobius, a character in Marvel Comics * Mobius, also known as the Anti-Monitor, a supervillain in DC Comics Mathematics * Möbius energy, a particular knot energy * Möbius strip, an object with one surface and one edge * Möbius function, an important multiplicative function in number theory and combinatorics ** Möbius transform, transform involving the Möbius function ** Möbius inversion formula, in number theory * Möbius transformation, a particular ration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hankel Matrix
In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a square matrix in which each ascending skew-diagonal from left to right is constant, e.g.: \qquad\begin a & b & c & d & e \\ b & c & d & e & f \\ c & d & e & f & g \\ d & e & f & g & h \\ e & f & g & h & i \\ \end. More generally, a Hankel matrix is any n \times n matrix A of the form A = \begin a_ & a_ & a_ & \ldots & \ldots &a_ \\ a_ & a_2 & & & &\vdots \\ a_ & & & & & \vdots \\ \vdots & & & & & a_\\ \vdots & & & & a_& a_ \\ a_ & \ldots & \ldots & a_ & a_ & a_ \end. In terms of the components, if the i,j element of A is denoted with A_, and assuming i\le j, then we have A_ = A_ for all k = 0,...,j-i. Properties * The Hankel matrix is a symmetric matrix. * Let J_n be the n \times n exchange matrix. If H is a m \times n Hankel matrix, then H = T J_n where T is a m \times n Toeplitz matrix. ** If T is real symmetric, then H = T J_n will have the same eigenvalues as T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Newton Series
A finite difference is a mathematical expression of the form . If a finite difference is divided by , one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems. The difference operator, commonly denoted \Delta is the operator that maps a function to the function \Delta /math> defined by :\Delta x)= f(x+1)-f(x). A difference equation is a functional equation that involves the finite difference operator in the same way as a differential equation involves derivatives. There are many similarities between difference equations and differential equations, specially in the solving methods. Certain recurrence relations can be written as difference equations by replacing iteration notation with finite differences. In numerical analysis, finite differences are widely used for #Relation with derivatives, approximating deri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shift Operator
In mathematics, and in particular functional analysis, the shift operator also known as translation operator is an operator that takes a function to its translation . In time series analysis, the shift operator is called the lag operator. Shift operators are examples of linear operators, important for their simplicity and natural occurrence. The shift operator action on functions of a real variable plays an important role in harmonic analysis, for example, it appears in the definitions of almost periodic functions, positive-definite functions, derivatives, and convolution. Shifts of sequences (functions of an integer variable) appear in diverse areas such as Hardy spaces, the theory of abelian varieties, and the theory of symbolic dynamics, for which the baker's map is an explicit representation. Definition Functions of a real variable The shift operator (where ) takes a function on R to its translation , : T^t f(x) = f_t(x) = f(x+t)~. A practical operational calculus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hankel Transform Of A Series
In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a square matrix in which each ascending skew-diagonal from left to right is constant, e.g.: \qquad\begin a & b & c & d & e \\ b & c & d & e & f \\ c & d & e & f & g \\ d & e & f & g & h \\ e & f & g & h & i \\ \end. More generally, a Hankel matrix is any n \times n matrix A of the form A = \begin a_ & a_ & a_ & \ldots & \ldots &a_ \\ a_ & a_2 & & & &\vdots \\ a_ & & & & & \vdots \\ \vdots & & & & & a_\\ \vdots & & & & a_& a_ \\ a_ & \ldots & \ldots & a_ & a_ & a_ \end. In terms of the components, if the i,j element of A is denoted with A_, and assuming i\le j, then we have A_ = A_ for all k = 0,...,j-i. Properties * The Hankel matrix is a symmetric matrix. * Let J_n be the n \times n exchange matrix. If H is a m \times n Hankel matrix, then H = T J_n where T is a m \times n Toeplitz matrix. ** If T is real symmetric, then H = T J_n will have the same eigenvalues as T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]