Binomial-QMF
   HOME
*





Binomial-QMF
A binomial QMF – properly an orthonormal binomial quadrature mirror filter – is an orthogonal wavelet developed in 1990. The binomial QMF bank with perfect reconstruction (PR) was designed by Ali Akansu, and published in 1990, using the family of binomial polynomials for subband decomposition of discrete-time signals. Akansu and his fellow authors also showed that these binomial-QMF filters are identical to the wavelet filters designed independently by Ingrid Daubechies from compactly supported orthonormal wavelet transform perspective in 1988 (Daubechies wavelet The Daubechies wavelets, based on the work of Ingrid Daubechies, are a family of orthogonal wavelets defining a discrete wavelet transform and characterized by a maximal number of vanishing moments for some given support. With each wavelet type ...). It was an extension of Akansu's prior work on Binomial coefficient and Hermite polynomials wherein he developed the Modified Hermite Transformation (MHT) in 1987. La ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ali Akansu
Ali Naci Akansu (born May 6, 1958) is a Turkish-American Professor of electrical & computer engineering and scientist in applied mathematics. He is best known for his seminal contributions to the theory and applications of linear subspace methods including sub-band and wavelet transforms, particularly the binomial QMF (also known as Daubechies wavelet) and the multivariate framework to design statistically optimized filter bank (eigen filter bank). Biography Akansu received his B.S. degree from the Istanbul Technical University, Turkey, in 1980, his M.S. and PhD degrees from the Polytechnic University (now New York University), Brooklyn, New York, in 1983 and 1987, respectively, all in Electrical Engineering. Since 1987, he has been with the New Jersey Institute of Technology where he is a Professor of Electrical and Computer Engineering. He was a Visiting Professor at Courant Institute of Mathematical Sciences of the New York University, 2009–2010. In 1990, he showed th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daubechies Wavelet
The Daubechies wavelets, based on the work of Ingrid Daubechies, are a family of orthogonal wavelets defining a discrete wavelet transform and characterized by a maximal number of vanishing moments for some given support. With each wavelet type of this class, there is a scaling function (called the ''father wavelet'') which generates an orthogonal multiresolution analysis. Properties In general the Daubechies wavelets are chosen to have the highest number ''A'' of vanishing moments, (this does not imply the best smoothness) for given support width (number of coefficients) 2''A''. There are two naming schemes in use, D''N'' using the length or number of taps, and db''A'' referring to the number of vanishing moments. So D4 and db2 are the same wavelet transform. Among the 2''A''−1 possible solutions of the algebraic equations for the moment and orthogonality conditions, the one is chosen whose scaling filter has extremal phase. The wavelet transform is also easy to put into p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wavelet
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing. For example, a wavelet could be created to have a frequency of Middle C and a short duration of roughly one tenth of a second. If this wavelet were to be convolved with a signal created from the recording of a melody, then the resulting signal would be useful for determining when the Middle C note appeared in the song. Mathematically, a wavelet correlates with a signal if a portion of the signal is similar. Correlation is at the core of many practical wavelet applications. As a mathematical tool, wavelets can be used to extract information from many different kinds of data, including but not limited to au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Wavelet Transform
In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency ''and'' location information (location in time). Examples Haar wavelets The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of 2^n numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum. This process is repeated recursively, pairing up the sums to prove the next scale, which leads to 2^n-1 differences and a final sum. Daubechies wavelets The most commonly used set of discrete wavelet transforms was formulated by the Belgian mathematician Ingrid Daubechies in 1988. This formulation is based on the use of recurrence relations to generate progressively finer discrete samplings o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Wavelet
An orthogonal wavelet is a wavelet whose associated wavelet transform is orthogonal. That is, the inverse wavelet transform is the adjoint of the wavelet transform. If this condition is weakened one may end up with biorthogonal wavelets. Basics The scaling function is a refinable function. That is, it is a fractal functional equation, called the refinement equation (twin-scale relation or dilation equation): :\phi(x)=\sum_^ a_k\phi(2x-k), where the sequence (a_0,\dots, a_) of real numbers is called a scaling sequence or scaling mask. The wavelet proper is obtained by a similar linear combination, :\psi(x)=\sum_^ b_k\phi(2x-k), where the sequence (b_0,\dots, b_) of real numbers is called a wavelet sequence or wavelet mask. A necessary condition for the ''orthogonality'' of the wavelets is that the scaling sequence is orthogonal to any shifts of it by an even number of coefficients: :\sum_ a_n a_=2\delta_, where \delta_ is the Kronecker delta. In this case there is the same numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ingrid Daubechies
Baroness Ingrid Daubechies ( ; ; born 17 August 1954) is a Belgian physicist and mathematician. She is best known for her work with wavelets in image compression. Daubechies is recognized for her study of the mathematical methods that enhance image-compression technology. She is a member of the National Academy of Engineering, the National Academy of Sciences and the American Academy of Arts and Sciences. She is a 1992 MacArthur Fellow. She also served on the Mathematical Sciences jury for the Infosys Prize from 2011 to 2013. The name Daubechies is widely associated with the orthogonal Daubechies wavelet and the biorthogonal CDF wavelet. A wavelet from this family of wavelets is now used in the JPEG 2000 standard. Her research involves the use of automatic methods from both mathematics, technology, and biology to extract information from samples such as bones and teeth. She also developed sophisticated image processing techniques used to help establish the authenticity and ag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binomial Coefficient
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the term in the polynomial expansion of the binomial power ; this coefficient can be computed by the multiplicative formula :\binom nk = \frac, which using factorial notation can be compactly expressed as :\binom = \frac. For example, the fourth power of is :\begin (1 + x)^4 &= \tbinom x^0 + \tbinom x^1 + \tbinom x^2 + \tbinom x^3 + \tbinom x^4 \\ &= 1 + 4x + 6 x^2 + 4x^3 + x^4, \end and the binomial coefficient \tbinom =\tfrac = \tfrac = 6 is the coefficient of the term. Arranging the numbers \tbinom, \tbinom, \ldots, \tbinom in successive rows for n=0,1,2,\ldots gives a triangular array called Pascal's triangle, satisfying the recurrence relation :\binom = \binom + \binom. The binomial coefficients occur in many areas of mathematics, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermite Polynomials
In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. The polynomials arise in: * signal processing as Hermitian wavelets for wavelet transform analysis * probability, such as the Edgeworth series, as well as in connection with Brownian motion; * combinatorics, as an example of an Appell sequence, obeying the umbral calculus; * numerical analysis as Gaussian quadrature; * physics, where they give rise to the eigenstates of the quantum harmonic oscillator; and they also occur in some cases of the heat equation (when the term \beginxu_\end is present); * systems theory in connection with nonlinear operations on Gaussian noise. * random matrix theory in Gaussian ensembles. Hermite polynomials were defined by Pierre-Simon Laplace in 1810, though in scarcely recognizable form, and studied in detail by Pafnuty Chebyshev in 1859. Chebyshev's work was overlooked, and they were named later after Charles Hermite, who wrote on the polynomials in 1864, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orthogonal Wavelets
In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''. By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in other fields including art and chemistry. Etymology The word comes from the Ancient Greek ('), meaning "upright", and ('), meaning "angle". The Ancient Greek (') and Classical Latin ' originally denoted a rectangle. Later, they came to mean a right triangle. In the 12th century, the post-classical Latin word ''orthogonalis'' came to mean a right angle or something related to a right angle. Mathematics Physics * In optics, polarization states are said to be orthogonal when they propagate independently of each other, as in vertical and horizontal linear polarization or right- and left-handed circular polarization. * In special relativity, a time axis determined by a rapidity of motion is hyperbolic-orthogonal to a space axis of s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]