Binary Golay Code
   HOME
*



picture info

Binary Golay Code
In mathematics and electronics engineering, a binary Golay code is a type of linear error-correcting code used in digital communications. The binary Golay code, along with the ternary Golay code, has a particularly deep and interesting connection to the theory of finite sporadic groups in mathematics. These codes are named in honor of Marcel J. E. Golay whose 1949 paper introducing them has been called, by E. R. Berlekamp, the "best single published page" in coding theory. There are two closely related binary Golay codes. The extended binary Golay code, ''G''24 (sometimes just called the "Golay code" in finite group theory) encodes 12 bits of data in a 24-bit word in such a way that any 3-bit errors can be corrected or any 7-bit errors can be detected. The other, the perfect binary Golay code, ''G''23, has codewords of length 23 and is obtained from the extended binary Golay code by deleting one coordinate position (conversely, the extended binary Golay code is obtained from t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steiner System
250px, thumbnail, The Fano plane is a Steiner triple system S(2,3,7). The blocks are the 7 lines, each containing 3 points. Every pair of points belongs to a unique line. In combinatorial mathematics, a Steiner system (named after Jakob Steiner) is a type of block design, specifically a t-design with λ = 1 and ''t'' = 2 or (recently) ''t'' ≥ 2. A Steiner system with parameters ''t'', ''k'', ''n'', written S(''t'',''k'',''n''), is an ''n''-element set ''S'' together with a set of ''k''-element subsets of ''S'' (called blocks) with the property that each ''t''-element subset of ''S'' is contained in exactly one block. In an alternate notation for block designs, an S(''t'',''k'',''n'') would be a ''t''-(''n'',''k'',1) design. This definition is relatively new. The classical definition of Steiner systems also required that ''k'' = ''t'' + 1. An S(2,3,''n'') was (and still is) called a ''Steiner triple'' (or ''triad'') ''system'', while an S(3,4,''n'') is called a ''Steiner quad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Game
A mathematical game is a game whose rules, strategies, and outcomes are defined by clear mathematical parameters. Often, such games have simple rules and match procedures, such as Tic-tac-toe and Dots and Boxes. Generally, mathematical games need not be conceptually intricate to involve deeper computational underpinnings. For example, even though the rules of Mancala are relatively basic, the game can be rigorously analyzed through the lens of combinatorial game theory. Mathematical games differ sharply from mathematical puzzles in that mathematical puzzles require specific mathematical expertise to complete, whereas mathematical games do not require a deep knowledge of mathematics to play. Often, the arithmetic core of mathematical games is not readily apparent to players untrained to note the statistical or mathematical aspects. Some mathematical games are of deep interest in the field of recreational mathematics. When studying a game's core mathematics, arithmetic theory i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Miracle Octad Generator
In mathematics, the Miracle Octad Generator, or MOG, is a mathematical tool introduced by Rob T. Curtis for manipulating the Mathieu groups, binary Golay code and Leech lattice. Description The Miracle Octad Generator is a 4x6 array of combinations describing any point in 24-dimensional space. It preserves all of the symmetries and maximal subgroups of the Mathieu group M24, namely the monad group, duad group, triad group, octad group, octern group, sextet group, trio group and duum group. It can therefore be used to study all of these symmetries. Golay code Another use for the Miracle Octad Generator is to quickly verify codewords of the binary Golay code. Each element of the Miracle Octad Generator can store either a '1' or a '0', usually displayed as an asterisk and blank space, respectively. Each column and the top row have a property known as the ''count'', which is the number of asterisks in that particular line. One of the criteria for a set of 24 coordinates to be a codewo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Difference
In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and \ is \. The symmetric difference of the sets ''A'' and ''B'' is commonly denoted by A \ominus B, or A\operatorname \triangle B. The power set of any set becomes an abelian group under the operation of symmetric difference, with the empty set as the neutral element of the group and every element in this group being its own inverse. The power set of any set becomes a Boolean ring, with symmetric difference as the addition of the ring and intersection as the multiplication of the ring. Properties The symmetric difference is equivalent to the union of both relative complements, that is: :A\,\triangle\,B = \left(A \setminus B\right) \cup \left(B \setminus A\right), The symmetric difference can also be expressed using the XOR operation ⊕ on t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamming Code
In computer science and telecommunication, Hamming codes are a family of linear error-correcting codes. Hamming codes can detect one-bit and two-bit errors, or correct one-bit errors without detection of uncorrected errors. By contrast, the simple parity code cannot correct errors, and can detect only an odd number of bits in error. Hamming codes are perfect codes, that is, they achieve the highest possible rate for codes with their block length and minimum distance of three. Richard W. Hamming invented Hamming codes in 1950 as a way of automatically correcting errors introduced by punched card readers. In his original paper, Hamming elaborated his general idea, but specifically focused on the Hamming(7,4) code which adds three parity bits to four bits of data. In mathematical terms, Hamming codes are a class of binary linear code. For each integer there is a code-word with block length and message length . Hence the rate of Hamming codes is , which is the highest possib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




GF(2)
(also denoted \mathbb F_2, or \mathbb Z/2\mathbb Z) is the finite field of two elements (GF is the initialism of ''Galois field'', another name for finite fields). Notations and \mathbb Z_2 may be encountered although they can be confused with the notation of -adic integers. is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively and , as usual. The elements of may be identified with the two possible values of a bit and to the boolean values ''true'' and ''false''. It follows that is fundamental and ubiquitous in computer science and its logical foundations. Definition GF(2) is the unique field with two elements with its additive and multiplicative identities respectively denoted and . Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below: If the elements of GF(2) are seen as boolean values, then the addition is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclic Code
In coding theory, a cyclic code is a block code, where the circular shifts of each codeword gives another word that belongs to the code. They are error-correcting codes that have algebraic properties that are convenient for efficient error detection and correction. Definition Let \mathcal be a linear code over a finite field (also called '' Galois field'') GF(q) of block length n. \mathcal is called a cyclic code if, for every codeword c=(c_1,\ldots,c_n) from \mathcal, the word (c_n,c_1,\ldots,c_) in GF(q)^n obtained by a cyclic right shift of components is again a codeword. Because one cyclic right shift is equal to n-1 cyclic left shifts, a cyclic code may also be defined via cyclic left shifts. Therefore the linear code \mathcal is cyclic precisely when it is invariant under all cyclic shifts. Cyclic codes have some additional structural constraint on the codes. They are based on Galois fields and because of their structural properties they are very useful for error control ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Residue Code
A quadratic residue code is a type of cyclic code. Examples Examples of quadratic residue codes include the (7,4) Hamming code over GF(2), the (23,12) binary Golay code over GF(2) and the (11,6) ternary Golay code over GF(3). Constructions There is a quadratic residue code of length p over the finite field GF(l) whenever p and l are primes, p is odd, and l is a quadratic residue modulo p. Its generator polynomial as a cyclic code is given by :f(x)=\prod_(x-\zeta^j) where Q is the set of quadratic residues of p in the set \ and \zeta is a primitive pth root of unity in some finite extension field of GF(l). The condition that l is a quadratic residue of p ensures that the coefficients of f lie in GF(l). The dimension of the code is (p+1)/2. Replacing \zeta by another primitive p-th root of unity \zeta^r either results in the same code or an equivalent code, according to whether or not r is a quadratic residue of p. An alternative construction avoids roots of unity. Define :g(x)=c+ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lexicode
Lexicographic codes or lexicodes are greedily generated error-correcting codes with remarkably good properties. They were produced independently by Vladimir Levenshtein and by John Horton Conway and Neil Sloane. The binary lexicographic codes are linear codes, and include the Hamming codes and the binary Golay codes. Construction A lexicode of length ''n'' and minimum distance ''d'' over a finite field is generated by starting with the all-zero vector and iteratively adding the next vector (in lexicographic order) of minimum Hamming distance ''d'' from the vectors added so far. As an example, the length-3 lexicode of minimum distance 2 would consist of the vectors marked by an "X" in the following example: : Here is a table of all n-bit lexicode by d-bit minimal hamming distance, resulting of maximum 2m codewords dictionnary. For example, F4 code (n=4,d=2,m=3), extended Hamming code (n=8,d=4,m=4) and especially Golay code (n=24,d=8,m=12) shows exceptional compactness compar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action (mathematics)
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]