Beurling Transform
   HOME
*





Beurling Transform
In mathematics, singular integral operators of convolution type are the singular integral operators that arise on R''n'' and T''n'' through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on ''L''2 is evident because the Fourier transform converts them into multiplication operators. Continuity on ''Lp'' spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Operator Norm
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its . Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Introduction and definition Given two normed vector spaces V and W (over the same base field, either the real numbers \R or the complex numbers \Complex), a linear map A : V \to W is continuous if and only if there exists a real number c such that \, Av\, \leq c \, v\, \quad \mbox v\in V. The norm on the left is the one in W and the norm on the right is the one in V. Intuitively, the continuous operator A never increases the length of any vector by more than a factor of c. Thus the image of a bounded set under a continuous operator is also bounded. Because of this property, the continuous linear operators are also known as bounded operators. In order to "measure the size" of A, one can take the infimum of the numbers c such that the above i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\in A, and \mathbf_(x)=0 otherwise, where \mathbf_A is a common notation for the indicator function. Other common notations are I_A, and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, :\mathbf_(x)= \in A For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition The indicator function of a subset of a set is a function \mathbf_A \colon X \to \ defined as \mathbf_A(x) := \begin 1 ~&\text~ x \in A~, \\ 0 ~&\text~ x \notin A~. \end The Iverson bracket provides the equivalent notation, \in A/math> or to be used instead of \mathbf_(x)\,. The function \mathbf_A is sometimes denoted , , , or even just . Nota ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Disk
In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose distance from ''P'' is less than or equal to one: :\bar D_1(P)=\.\, Unit disks are special cases of disks and unit balls; as such, they contain the interior of the unit circle and, in the case of the closed unit disk, the unit circle itself. Without further specifications, the term ''unit disk'' is used for the open unit disk about the origin, D_1(0), with respect to the standard Euclidean metric. It is the interior of a circle of radius 1, centered at the origin. This set can be identified with the set of all complex numbers of absolute value less than one. When viewed as a subset of the complex plane (C), the unit disk is often denoted \mathbb. The open unit disk, the plane, and the upper half-plane The function :f(z)=\frac is an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dominated Convergence Theorem
In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the ''L''1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration. In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables. Statement Lebesgue's dominated convergence theorem. Let (f_n) be a sequence of complex-valued measurable functions on a measure space . Suppose that the sequence converges pointwise to a function f and is dominated by some integrable function g in the sense that : , f_n(x), \le g(x) for all numbers ''n'' in the index set of the sequence and all points x\in S. Then ''f'' is integrable (in the Lebesgue sense) and : \lim_ \int_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cauchy's Integral Formula
In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis. Theorem Let be an open subset of the complex plane , and suppose the closed disk defined as :D = \bigl\ is completely contained in . Let be a holomorphic function, and let be the circle, oriented counterclockwise, forming the boundary of . Then for every in the interior of , :f(a) = \frac \oint_\gamma \frac\,dz.\, The proof of this statement uses the Cauchy integral theorem and like that theorem, it only requires t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carleson Measure
In mathematics, a Carleson measure is a type of measure on subsets of ''n''- dimensional Euclidean space R''n''. Roughly speaking, a Carleson measure on a domain Ω is a measure that does not vanish at the boundary of Ω when compared to the surface measure on the boundary of Ω. Carleson measures have many applications in harmonic analysis and the theory of partial differential equations, for instance in the solution of Dirichlet problems with "rough" boundary. The Carleson condition is closely related to the boundedness of the Poisson operator. Carleson measures are named after the Swedish mathematician Lennart Carleson. Definition Let ''n'' ∈ N and let Ω ⊂ R''n'' be an open (and hence measurable) set with non-empty boundary ∂Ω. Let ''μ'' be a Borel measure In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Inversion Formula
In mathematics, the Fourier inversion theorem says that for many types of functions it is possible to recover a function from its Fourier transform. Intuitively it may be viewed as the statement that if we know all frequency and phase information about a wave then we may reconstruct the original wave precisely. The theorem says that if we have a function f:\R \to \Complex satisfying certain conditions, and we use the convention for the Fourier transform that :(\mathcalf)(\xi):=\int_ e^ \, f(y)\,dy, then :f(x)=\int_ e^ \, (\mathcalf)(\xi)\,d\xi. In other words, the theorem says that :f(x)=\iint_ e^ \, f(y)\,dy\,d\xi. This last equation is called the Fourier integral theorem. Another way to state the theorem is that if R is the flip operator i.e. (Rf)(x) := f(-x), then :\mathcal^=\mathcalR=R\mathcal. The theorem holds if both f and its Fourier transform are absolutely integrable (in the Lebesgue sense) and f is continuous at the point x. However, even under more genera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Kernel
In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson. Poisson kernels commonly find applications in control theory and two-dimensional problems in electrostatics. In practice, the definition of Poisson kernels are often extended to ''n''-dimensional problems. Two-dimensional Poisson kernels On the unit disc In the complex plane, the Poisson kernel for the unit disc is given by P_r(\theta) = \sum_^\infty r^e^ = \frac = \operatorname\left(\frac\right), \ \ \ 0 \le r < 1. This can be thought of in two ways: either as a function of ''r'' and ''θ'', or as a family of functions of ''θ'' indexed by ''r''. If D = \ is the open

Principle Of The Argument
In complex analysis, the argument principle (or Cauchy's argument principle) relates the difference between the number of zeros and poles of a meromorphic function to a contour integral of the function's logarithmic derivative. Specifically, if ''f''(''z'') is a meromorphic function inside and on some closed contour ''C'', and ''f'' has no zeros or poles on ''C'', then : \frac\oint_ \, dz=Z-P where ''Z'' and ''P'' denote respectively the number of zeros and poles of ''f''(''z'') inside the contour ''C'', with each zero and pole counted as many times as its multiplicity and order, respectively, indicate. This statement of the theorem assumes that the contour ''C'' is simple, that is, without self-intersections, and that it is oriented counter-clockwise. More generally, suppose that ''f''(''z'') is a meromorphic function on an open set Ω in the complex plane and that ''C'' is a closed curve in Ω which avoids all zeros and poles of ''f'' and is contractible to a point insid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hilbert–Schmidt Operator
In mathematics, a Hilbert–Schmidt operator, named after David Hilbert and Erhard Schmidt, is a bounded operator A \colon H \to H that acts on a Hilbert space H and has finite Hilbert–Schmidt norm \, A\, ^2_ \ \stackrel\ \sum_ \, Ae_i\, ^2_H, where \ is an orthonormal basis. The index set I need not be countable. However, the sum on the right must contain at most countably many non-zero terms, to have meaning. This definition is independent of the choice of the orthonormal basis. In finite-dimensional Euclidean space, the Hilbert–Schmidt norm \, \cdot\, _\text is identical to the Frobenius norm. , , ·, , is well defined The Hilbert–Schmidt norm does not depend on the choice of orthonormal basis. Indeed, if \_ and \_ are such bases, then \sum_i \, Ae_i\, ^2 = \sum_ \left, \langle Ae_i, f_j\rangle \^2 = \sum_ \left, \langle e_i, A^*f_j\rangle \^2 = \sum_j\, A^* f_j\, ^2. If e_i = f_i, then \sum_i \, Ae_i\, ^2 = \sum_i\, A^* e_i\, ^2. As for any bounded operato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]