Bayesian Average
   HOME
*





Bayesian Average
A Bayesian average is a method of estimating the mean of a population using outside information, especially a pre-existing belief, which is factored into the calculation. This is a central feature of Bayesian interpretation. This is useful when the available data set is small. Calculating the Bayesian average uses the prior mean ''m'' and a constant ''C''. ''C'' is chosen based on the typical data set size required for a robust estimate of the sample mean. The value is larger when the expected variation between data sets (within the larger population) is small. It is smaller when the data sets are expected to vary substantially from one another. : \bar = This is equivalent to adding ''C'' data points of value ''m'' to the data set. It is a weighted average of a prior average ''m'' and the sample average. When the x_i are binary values 0 or 1, ''m'' can be interpreted as the prior estimate of a binomial probability with the Bayesian average giving a posterior estima ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mean
There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set. For a data set, the ''arithmetic mean'', also known as "arithmetic average", is a measure of central tendency of a finite set of numbers: specifically, the sum of the values divided by the number of values. The arithmetic mean of a set of numbers ''x''1, ''x''2, ..., x''n'' is typically denoted using an overhead bar, \bar. If the data set were based on a series of observations obtained by sampling from a statistical population, the arithmetic mean is the ''sample mean'' (\bar) to distinguish it from the mean, or expected value, of the underlying distribution, the ''population mean'' (denoted \mu or \mu_x).Underhill, L.G.; Bradfield d. (1998) ''Introstat'', Juta and Company Ltd.p. 181/ref> Outside probability and statistics, a wide range of other notions of mean are o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bayesian Probability
Bayesian probability is an Probability interpretations, interpretation of the concept of probability, in which, instead of frequentist probability, frequency or propensity probability, propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with Hypothesis, hypotheses; that is, with propositions whose truth value, truth or falsity is unknown. In the Bayesian view, a probability is assigned to a hypothesis, whereas under frequentist inference, a hypothesis is typically tested without being assigned a probability. Bayesian probability belongs to the category of evidential probabilities; to evaluate the probability of a hypothesis, the Bayesian probabilist specifies a prior probability. This, in turn, is then updated to a posterior probability in the light of new, re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binomial Proportion Confidence Interval
In statistics, a binomial proportion confidence interval is a confidence interval for the probability of success calculated from the outcome of a series of success–failure experiments (Bernoulli trials). In other words, a binomial proportion confidence interval is an interval estimate of a success probability ''p'' when only the number of experiments ''n'' and the number of successes ''nS'' are known. There are several formulas for a binomial confidence interval, but all of them rely on the assumption of a binomial distribution. In general, a binomial distribution applies when an experiment is repeated a fixed number of times, each trial of the experiment has two possible outcomes (success and failure), the probability of success is the same for each trial, and the trials are statistically independent. Because the binomial distribution is a discrete probability distribution (i.e., not continuous) and difficult to calculate for large numbers of trials, a variety of approximations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Smoothing
In statistics, additive smoothing, also called Laplace smoothing or Lidstone smoothing, is a technique used to smooth categorical data. Given a set of observation counts \textstyle from a \textstyle -dimensional multinomial distribution with \textstyle trials, a "smoothed" version of the counts gives the estimator: :\hat\theta_i= \frac \qquad (i=1,\ldots,d), where the smoothed count \textstyle and the "pseudocount" ''α'' > 0 is a smoothing parameter. ''α'' = 0 corresponds to no smoothing. (This parameter is explained in below.) Additive smoothing is a type of shrinkage estimator, as the resulting estimate will be between the empirical probability ( relative frequency) \textstyle , and the uniform probability \textstyle . Invoking Laplace's rule of succession, some authors have argued that ''α'' should be 1 (in which case the term add-one smoothing is also used), though in practice a smaller value is typically chosen. From a Bayesian point of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]