Bass–Serre Theory
   HOME
*





Bass–Serre Theory
Bass–Serre theory is a part of the Mathematics, mathematical subject of group theory that deals with analyzing the algebraic structure of Group (math), groups Group action (mathematics), acting by automorphisms on simplicial Tree (graph theory), trees. The theory relates group actions on trees with decomposing groups as iterated applications of the operations of free product with amalgamation and HNN extension, via the notion of the fundamental group of a graph of groups. Bass–Serre theory can be regarded as one-dimensional version of the orbifold, orbifold theory. History Bass–Serre theory was developed by Jean-Pierre Serre in the 1970s and formalized in ''Trees'', Serre's 1977 monograph (developed in collaboration with Hyman Bass) on the subject.J.-P. Serre''Trees''.(Translated from the French by John Stillwell). Springer-Verlag, 1980. Serre's original motivation was to understand the structure of certain algebraic groups whose Bruhat–Tits buildings are trees. However, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

3-manifold
In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. Introduction Definition A topological space ''X'' is a 3-manifold if it is a second-countable Hausdorff space and if every point in ''X'' has a neighbourhood that is homeomorphic to Euclidean 3-space. Mathematical theory of 3-manifolds The topological, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dimensions, and so there is a prevalence of very specialized techniques that do not generalize to dimensions g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Presentation
In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set ''R'' of relations among those generators. We then say ''G'' has presentation :\langle S \mid R\rangle. Informally, ''G'' has the above presentation if it is the "freest group" generated by ''S'' subject only to the relations ''R''. Formally, the group ''G'' is said to have the above presentation if it is isomorphic to the quotient of a free group on ''S'' by the normal subgroup generated by the relations ''R''. As a simple example, the cyclic group of order ''n'' has the presentation :\langle a \mid a^n = 1\rangle, where 1 is the group identity. This may be written equivalently as :\langle a \mid a^n\rangle, thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Homomorphism
In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) where the group operation on the left side of the equation is that of ''G'' and on the right side that of ''H''. From this property, one can deduce that ''h'' maps the identity element ''eG'' of ''G'' to the identity element ''eH'' of ''H'', : h(e_G) = e_H and it also maps inverses to inverses in the sense that : h\left(u^\right) = h(u)^. \, Hence one can say that ''h'' "is compatible with the group structure". Older notations for the homomorphism ''h''(''x'') may be ''x''''h'' or ''x''''h'', though this may be confused as an index or a general subscript. In automata theory, sometimes homomorphisms are written to the right of their arguments without parentheses, so that ''h''(''x'') becomes simply xh. In areas of mathematics where one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multiple Edge
In graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex and the same head vertex. A simple graph has no multiple edges and no loops. Depending on the context, a graph may be defined so as to either allow or disallow the presence of multiple edges (often in concert with allowing or disallowing loops): *Where graphs are defined so as to ''allow'' multiple edges and loops, a graph without loops or multiple edges is often distinguished from other graphs by calling it a ''simple graph.'' *Where graphs are defined so as to ''disallow'' multiple edges and loops, a multigraph or a pseudograph is often defined to mean a "graph" which ''can'' have loops and multiple edges. Multiple edges are, for example, useful in the consideration of electrical networks, from a graph theoretical point of view. Additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph (discrete Mathematics)
In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a Set (mathematics), set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Martin Dunwoody
Martin John Dunwoody (born 3 November 1938) is an emeritus professor of Mathematics at the University of Southampton, England. He earned his PhD in 1964 from the Australian National University. He held positions at the University of Sussex before becoming a professor at the University of Southampton in 1992. He has been emeritus professor since 2003. Dunwoody works on geometric group theory and low-dimensional topology. He is a leading expert in splittings and accessibility of discrete groups, groups acting on graphs and trees, JSJ-decompositions, the topology of 3-manifolds and the structure of their fundamental groups. Since 1971 several mathematicians have been working on Wall's conjecture, posed by Wall in a 1971 paper, which said that all finitely generated groups are accessible. Roughly, this means that every finitely generated group can be constructed from finite and one-ended groups via a finite number of amalgamated free products and HNN extensions over finite sub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gilbert Baumslag
Gilbert Baumslag (April 30, 1933 – October 20, 2014) was a Distinguished Professor at the City College of New York, with joint appointments in mathematics, computer science, and electrical engineering. He was director of thCenter for Algorithms and Interactive Scientific Software which grew out of the MAGNUS computational group theory project he also headed. Baumslag was also the organizer of the New York Group Theory Seminar. Baumslag graduated from the University of the Witwatersrand in South Africa with a Bachelor of Science, B.Sc. Honours (Masters) and Doctor of Science, D.Sc. He earned his Doctor of Philosophy, Ph.D. from the University of Manchester in 1958; his thesis, written under the direction of Bernhard Neumann, was titled ''Some aspects of groups with unique roots''. His contributions include the Baumslag–Solitar groups and parafree groups. Baumslag was a visiting scholar at the Institute for Advanced Study in 1968–69. In 2012 he became a fellow of the American ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Allen Hatcher
Allen, Allen's or Allens may refer to: Buildings * Allen Arena, an indoor arena at Lipscomb University in Nashville, Tennessee * Allen Center, a skyscraper complex in downtown Houston, Texas * Allen Fieldhouse, an indoor sports arena on the University of Kansas campus in Lawrence * Allen House (other) * Allen Power Plant (other) Businesses *Allen (brand), an American tool company *Allen's, an Australian brand of confectionery * Allens (law firm), an Australian law firm formerly known as Allens Arthur Robinson *Allen's (restaurant), a former hamburger joint and nightclub in Athens, Georgia, United States *Allen & Company LLC, a small, privately held investment bank *Allens of Mayfair, a butcher shop in London from 1830 to 2015 *Allens Boots, a retail store in Austin, Texas * Allens, Inc., a brand of canned vegetables based in Arkansas, US, now owned by Del Monte Foods * Allen's department store, a.k.a. Allen's, George Allen, Inc., Philadelphia, USA People * Allen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]