Barrington's Theorem
   HOME
*





Barrington's Theorem
In computational complexity theory, the class NC (for "Nick's Class") is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem with input size ''n'' is in NC if there exist constants ''c'' and ''k'' such that it can be solved in time using parallel processors. Stephen Cook coined the name "Nick's class" after Nick Pippenger, who had done extensive research on circuits with polylogarithmic depth and polynomial size.Arora & Barak (2009) p.120 Just as the class P can be thought of as the tractable problems ( Cobham's thesis), so NC can be thought of as the problems that can be efficiently solved on a parallel computer.Arora & Barak (2009) p.118 NC is a subset of P because polylogarithmic parallel computations can be simulated by polynomial-time sequential ones. It is unknown whether NC = P, but most researchers suspect this to be false, meaning that there are probably some tractable pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computationa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gaussian Elimination
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855) although some special cases of the method—albeit presented without proof—were known to Chinese mathematicians as early as circa 179 AD. To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations: * Swapping two rows, * Multiplying a row by a nonzero number, * Adding a multiple of one row to another row. (subtraction can be achieved by multiplying one row with -1 and adding ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solvable Group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Motivation Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0). This means associated to a polynomial f \in F /math> there is a tower of field extensionsF = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=Ksuch that # F_i = F_ alpha_i/math> where \alpha_i^ \in F_, so \alpha_i is a solution to the equation x^ - a where a \in F_ # F_m contains a splitting field for f(x) Example For example, the smallest Galois field extension of \mathbb containing the elemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniformity (circuit)
In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits C_,C_,\ldots (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes. For example, a prominent circuit class P/poly consists of Boolean functions computable by circuits of polynomial size. Proving that \mathsf\not\subseteq \mathsf would separate P and NP (see below). Complexity classes defined in terms of Boolean circuits include AC0, AC, TC0, NC1, NC, and P/poly. Size and depth A Boolean circuit with n input bits is a directed acyclic graph in which every node (usually called ''gates'' in this context) is either an input node of in-degree 0 labelle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alternating Turing Machine
In computational complexity theory, an alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting computations that generalizes the rules used in the definition of the complexity classes NP and co-NP. The concept of an ATM was set forth by Chandra and Stockmeyer and independently by Kozen in 1976, with a joint journal publication in 1981. Definitions Informal description The definition of NP uses the ''existential mode'' of computation: if ''any'' choice leads to an accepting state, then the whole computation accepts. The definition of co-NP uses the ''universal mode'' of computation: only if ''all'' choices lead to an accepting state does the whole computation accept. An alternating Turing machine (or to be more precise, the definition of acceptance for such a machine) alternates between these modes. An alternating Turing machine is a non-deterministic Turing machine whose states are divided into two sets: existential states ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AC (complexity)
In circuit complexity, AC is a complexity class hierarchy. Each class, ACi, consists of the languages recognized by Boolean circuits with depth O(\log^i n) and a polynomial number of unlimited fan-in AND and OR gates. The name "AC" was chosen by analogy to NC, with the "A" in the name standing for "alternating" and referring both to the alternation between the AND and OR gates in the circuits and to alternating Turing machines., page 27-18. The smallest AC class is AC0, consisting of constant-depth unlimited fan-in circuits. The total hierarchy of AC classes is defined as \mbox = \bigcup_ \mbox^i Relation to NC The AC classes are related to the NC classes, which are defined similarly, but with gates having only constant fanin. For each ''i'', we have :\mbox^i \subseteq \mbox^i \subseteq \mbox^. As an immediate consequence of this, we have that NC = AC. It is known that inclusion is strict for ''i'' = 0. Variations The power of the AC classes can be affected by addi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NL (complexity)
In computational complexity theory, NL (Nondeterministic Logarithmic-space) is the complexity class containing decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space. NL is a generalization of L, the class for logspace problems on a deterministic Turing machine. Since any deterministic Turing machine is also a nondeterministic Turing machine, we have that L is contained in NL. NL can be formally defined in terms of the computational resource nondeterministic space (or NSPACE) as NL = NSPACE(log ''n''). Important results in complexity theory allow us to relate this complexity class with other classes, telling us about the relative power of the resources involved. Results in the field of algorithms, on the other hand, tell us which problems can be solved with this resource. Like much of complexity theory, many important questions about NL are still open (see Unsolved problems in computer science). Occasionally NL ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


L (complexity)
In computational complexity theory, L (also known as LSPACE or DLOGSPACE) is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space., Definition 8.12, p. 295., p. 177. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way. Complete problems and logical characterization Every non-trivial problem in L is complete under log-space reductions, so weaker reductions are required to identify meaningful notions of L-completeness, the most common being first-order reductions. A 2004 result by Omer Reingold shows that USTCON, the problem of whether there exists a path ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Operator
In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective \lor can be used to join the two atomic formulas P and Q, rendering the complex formula P \lor Q . Common connectives include negation, disjunction, conjunction, and implication. In standard systems of classical logic, these connectives are interpreted as truth functions, though they receive a variety of alternative interpretations in nonclassical logics. Their classical interpretations are similar to the meanings of natural language expressions such as English "not", "or", "and", and "if", but not identical. Discrepancies between natural language connectives and those of classical logic have motivated nonclassical approaches to natural language meaning as well as approaches which pair a classical compositional semantics wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Tree
In computer science, a binary tree is a k-ary k = 2 tree data structure in which each node has at most two children, which are referred to as the ' and the '. A recursive definition using just set theory notions is that a (non-empty) binary tree is a tuple (''L'', ''S'', ''R''), where ''L'' and ''R'' are binary trees or the empty set and ''S'' is a singleton set containing the root. Some authors allow the binary tree to be the empty set as well. From a graph theory perspective, binary (and K-ary) trees as defined here are arborescences. A binary tree may thus be also called a bifurcating arborescence—a term which appears in some very old programming books, before the modern computer science terminology prevailed. It is also possible to interpret a binary tree as an undirected, rather than a directed graph, in which case a binary tree is an ordered, rooted tree. Some authors use rooted binary tree instead of ''binary tree'' to emphasize the fact that the tree is rooted, bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Addition
Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. The addition of two Natural number, whole numbers results in the total amount or ''summation, sum'' of those values combined. The example in the adjacent image shows a combination of three apples and two apples, making a total of five apples. This observation is equivalent to the Expression (mathematics), mathematical expression (that is, "3 ''plus'' 2 is Equality (mathematics), equal to 5"). Besides counting items, addition can also be defined and executed without referring to concrete objects, using abstractions called numbers instead, such as integers, real numbers and complex numbers. Addition belongs to arithmetic, a branch of mathematics. In algebra, another area of mathematics, addition can also be performed on abstract objects su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clarkson University
Clarkson University is a private research university with its main campus in Potsdam, New York, and additional graduate program and research facilities in the New York Capital Region and Beacon, New York. It was founded in 1896 and has an enrollment of about 4,300 students studying toward bachelor's, master's, and doctoral degrees in each of its schools or institutes: the Institute for a Sustainable Environment, the School of Arts & Sciences, the David D. Reh School of Business, the Wallace H. Coulter School of Engineering, and the Earl R. and Barbara D. Lewis School of Health Sciences. It is classified among "R2: Doctoral Universities – High research activity." History The school was founded in 1896, funded by the sisters of Thomas S. Clarkson, a local entrepreneur who was accidentally killed while working in his sandstone quarry not far from Potsdam. When a worker was in danger of being crushed by a loose pump, Clarkson pushed him out of the way risking his own life. Cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]