Barrelled Set
   HOME
*





Barrelled Set
In functional analysis, a subset of a topological vector space (TVS) is called a barrel or a barrelled set if it is closed convex balanced and absorbing. Barrelled sets play an important role in the definitions of several classes of topological vector spaces, such as barrelled spaces. Definitions Let X be a topological vector space (TVS). A subset of X is called a if it is closed convex balanced and absorbing in X. A subset of X is called and a if it absorbs every bounded subset of X. Every bornivorous subset of X is necessarily an absorbing subset of X. Let B_0 \subseteq X be a subset of a topological vector space X. If B_0 is a balanced absorbing subset of X and if there exists a sequence \left(B_i\right)_^ of balanced absorbing subsets of X such that B_ + B_ \subseteq B_i for all i = 0, 1, \ldots, then B_0 is called a in X, where moreover, B_0 is said to be a(n): * if in addition every B_i is a closed and bornivorous subset of X for every i \geq 0. * if in ad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Vector Space
In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations (vector addition and scalar multiplication) are also Continuous function, continuous functions. Such a topology is called a and every topological vector space has a Uniform space, uniform topological structure, allowing a notion of uniform convergence and Complete topological vector space, completeness. Some authors also require that the space is a Hausdorff space (although this article does not). One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs. Many topological vec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Set
In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment (possibly empty). For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval with the property that its epigraph (the set of points on or above the graph of the function) is a convex set. Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Balanced Set
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space (over a field \mathbb with an absolute value function , \cdot , ) is a set S such that a S \subseteq S for all scalars a satisfying , a, \leq 1. The balanced hull or balanced envelope of a set S is the smallest balanced set containing S. The balanced core of a subset S is the largest balanced set contained in S. Balanced sets are ubiquitous in functional analysis because every neighborhood of the origin in every topological vector space (TVS) contains a balanced neighborhood of the origin and every convex neighborhood of the origin contains a balanced convex neighborhood of the origin (even if the TVS is not locally convex). This neighborhood can also be chosen to be an open set or, alternatively, a closed set. Definition Let X be a vector space over the field \mathbb of real or complex numbers. Notation If S is a set, a is a scalar, and B \subseteq \mathbb then let a S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Absorbing Set
In functional analysis and related areas of mathematics an absorbing set in a vector space is a Set (mathematics), set S which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are Radial set, radial or absorbent set. Every Neighbourhood (mathematics), neighborhood of the origin in every topological vector space is an absorbing subset. Definition Suppose that X is a vector space over the Field (mathematics), field \mathbb of real numbers \R or complex numbers \Complex. Notation Products of scalars and vectors For any -\infty \leq r \leq R \leq \infty, vector x, and subset A \subseteq X, let B_r = \ \quad \text \quad B_ = \ denote the ''open ball'' (respectively, the ''closed ball'') of radius r in \mathbb centered at 0, and let (r, R) x = \ \quad \text \quad (r, R) A = \. Similarly, if K \subseteq \mathbb and k is a scalar then let K A = \, K x = \, k A = \, and \mathbb x = \ = \operatorname \. Balanced co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Barrelled Space
In functional analysis and related areas of mathematics, a barrelled space (also written barreled space) is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by . Barrels A convex and balanced subset of a real or complex vector space is called a and it is said to be , , or . A or a in a topological vector space (TVS) is a subset that is a closed absorbing disk; that is, a barrel is a convex, balanced, closed, and absorbing subset. Every barrel must contain the origin. If \dim X \geq 2 and if S is any subset of X, then S is a convex, balanced, and absorbing set of X if and only if this is all true of S \cap Y in Y for every 2-dimensional vector subspace Y; thus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bornivorous Set
In functional analysis, a subset of a real or complex vector space X that has an associated vector bornology \mathcal is called bornivorous and a bornivore if it absorbs every element of \mathcal. If X is a topological vector space (TVS) then a subset S of X is bornivorous if it is bornivorous with respect to the von-Neumann bornology of X. Bornivorous sets play an important role in the definitions of many classes of topological vector spaces, particularly bornological spaces. Definitions If X is a TVS then a subset S of X is called and a if S absorbs every bounded subset of X. An absorbing disk in a locally convex space is bornivorous if and only if its Minkowski functional is locally bounded (i.e. maps bounded sets to bounded sets). Infrabornivorous sets and infrabounded maps A linear map between two TVSs is called if it maps Banach disks to bounded disks. A disk in X is called if it absorbs every Banach disk. An absorbing disk in a locally conv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Set (topological Vector Space)
In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be ''inflated'' to include the set. A set that is not bounded is called unbounded. Bounded sets are a natural way to define locally convex polar topologies on the vector spaces in a dual pair, as the polar set of a bounded set is an absolutely convex and absorbing set. The concept was first introduced by John von Neumann and Andrey Kolmogorov in 1935. Definition Suppose X is a topological vector space (TVS) over a field \mathbb. A subset B of X is called or just in X if any of the following equivalent conditions are satisfied: : For every neighborhood V of the origin there exists a real r > 0 such that B \subseteq s VFor any set A and scalar s, the notation s A is denotes the set s A := \. for all scalars s satisfying , s, \geq r. * This was the definition introduced by John von Neumann ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Closed Set
In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold. Equivalent definitions By definition, a subset A of a topological space (X, \tau) is called if its complement X \setminus A is an open subset of (X, \tau); that is, if X \setminus A \in \tau. A set is closed in X if and only if it is equal to its closure in X. Equivalently, a set is closed if and only if it contains all of its limit points. Yet another equivalent definition is that a set is closed if and only if it contains all of its boundary points. Every subset A \subseteq X is always contained in its (topological) closure in X, which is denoted by \operatorname_X A; that is, if A \subseteq X then A \subseteq \oper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semi Normed Vector Space
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real (physical) world. A norm is a real-valued function defined on the vector space that is commonly denoted x\mapsto \, x\, , and has the following properties: #It is nonnegative, meaning that \, x\, \geq 0 for every vector x. #It is positive on nonzero vectors, that is, \, x\, = 0 \text x = 0. # For every vector x, and every scalar \alpha, \, \alpha x\, = , \alpha, \, \, x\, . # The triangle inequality holds; that is, for every vectors x and y, \, x+y\, \leq \, x\, + \, y\, . A norm induces a distance, called its , by the formula d(x,y) = \, y-x\, . which makes any normed vector space into a metric space and a topological vector space. If this metric space is complete then the normed space is a Banach space. Every normed v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unit Ball
Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (album), 1997 album by the Australian band Regurgitator * The Units, a synthpunk band Television * ''The Unit'', an American television series * '' The Unit: Idol Rebooting Project'', South Korean reality TV survival show Business * Stock keeping unit, a discrete inventory management construct * Strategic business unit, a profit center which focuses on product offering and market segment * Unit of account, a monetary unit of measurement * Unit coin, a small coin or medallion (usually military), bearing an organization's insignia or emblem * Work unit, the name given to a place of employment in the People's Republic of China Science and technology Science and medicine * Unit, a vessel or section of a chemical plant * Blood unit, a measuremen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Convex Topological Vector Space
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Fréchet spaces are locally convex spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm. History Metrizable topologies on vecto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]