Balanced Number Partitioning
   HOME
*





Balanced Number Partitioning
Balanced number partitioning is a variant of multiway number partitioning in which there are constraints on the number of items allocated to each set. The input to the problem is a set of ''n'' items of different sizes, and two integers ''m'', ''k''. The output is a partition of the items into ''m'' subsets, such that the number of items in each subset is at most ''k''. Subject to this, it is required that the sums of sizes in the ''m'' subsets are as similar as possible. An example application is identical-machines scheduling where each machine has a job-queue that can hold at most ''k'' jobs. The problem has applications also in manufacturing of VLSI chips, and in assigning tools to machines in flexible manufacturing systems. In the standard three-field notation for optimal job scheduling problems, the problem of minimizing the largest sum is sometimes denoted by "P ,  # ≤ k ,  ''C''max". The middle field "# ≤ k" denotes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiway Number Partitioning
In computer science, multiway number partitioning is the problem of partitioning a multiset of numbers into a fixed number of subsets, such that the sums of the subsets are as similar as possible. It was first presented by Ronald Graham in 1969 in the context of the Identical-machines scheduling problem. The problem is parametrized by a positive integer ''k'', and called ''k''-way number partitioning. The input to the problem is a multiset ''S'' of numbers (usually integers), whose sum is ''k*T''. The associated decision problem is to decide whether ''S'' can be partitioned into ''k'' subsets such that the sum of each subset is exactly ''T''. There is also an optimization problem: find a partition of ''S'' into ''k'' subsets, such that the ''k'' sums are "as near as possible". The exact optimization objective can be defined in several ways: * Minimize the difference between the largest sum and the smallest sum. This objective is common in papers about multiway number partitioning, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multifit Algorithm
The multifit algorithm is an algorithm for multiway number partitioning, originally developed for the problem of identical-machines scheduling. It was developed by Coffman, Garey and Johnson. Its novelty comes from the fact that it uses an algorithm for another famous problem - the bin packing problem - as a subroutine. The algorithm The input to the algorithm is a set ''S'' of numbers, and a parameter ''n''. The required output is a partition of ''S'' into ''n'' subsets, such that the largest subset sum (also called the makespan) is as small as possible. The algorithm uses as a subroutine, an algorithm called '' first-fit-decreasing bin packing'' (FFD). The FFD algorithm takes as input the same set ''S'' of numbers, and a bin-capacity ''c''. It heuristically packs numbers into bins such that the sum of numbers in each bin is at most ''C'', aiming to use as few bins as possible. Multifit runs FFD multiple times, each time with a different capacity ''C'', until it finds some ''C'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matroid-constrained Number Partitioning
Matroid-constrained number partitioning is a variant of the multiway number partitioning problem, in which the subsets in the partition should be independent sets of a matroid. The input to this problem is a set ''S'' of items, a positive integer ''m'', and some ''m'' matroids over the same set ''S''. The goal is to partition ''S'' into ''m'' subsets, such that each subset ''i'' is an independent set in matroid ''i''. Subject to this constraint, some objective function should be minimized, for example, minimizing the largest sum item sizes in a subset. In a more general variant, each of the ''m'' matroids has a weight function, which assigns a weight to each element of the ground-set. Various objective functions have been considered. For each of the three operators max,min,sum, one can use this operator on the weights of items in each subset, and on the subsets themselves. All in all, there are 9 possible objective functions, each of which can be maximized or minimized. Special cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lp Norm
In mathematics, the spaces are function spaces defined using a natural generalization of the -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines. Applications Statistics In statistics, measures of central tendency and statistical dispersion, such as the mean, median, and standard deviation, are defined in terms of metrics, and measures of central tendency can be characterized as solutions to variational problems. In penalized regression, "L1 penalty" and "L2 penalty" refer to penaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Maximum Weight Matching
In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized. A special case of it is the assignment problem, in which the input is restricted to be a bipartite graph, and the matching constrained to be have cardinality that of the smaller of the two partitions. Another special case is the problem of finding a maximum cardinality matching on an unweighted graph: this corresponds to the case where all edge weights are the same. Algorithms There is a O(V^E) time algorithm to find a maximum matching or a maximum weight matching in a graph that is not bipartite; it is due to Jack Edmonds, is called the ''paths, trees, and flowers'' method or simply Edmonds' algorithm, and uses bidirected edges. A generalization of the same technique can also be used to find maximum independent set In graph theory, an independent set, stable set, coclique or anticlique is a set ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partition Matroid
In mathematics, a partition matroid or partitional matroid is a matroid that is a direct sum of uniform matroids. It is defined over a base set in which the elements are partitioned into different categories. For each category, there is a ''capacity constraint'' - a maximum number of allowed elements from this category. The independent sets of a partition matroid are exactly the sets in which, for each category, the number of elements from this category is at most the category capacity. Formal definition Let C_i be a collection of disjoint sets ("categories"). Let d_i be integers with 0\le d_i\le , C_i, ("capacities"). Define a subset I\subset \bigcup_i C_i to be "independent" when, for every index i, , I\cap C_i, \le d_i. The sets satisfying this condition form the independent sets of a matroid, called a partition matroid. The sets C_i are called the categories or the blocks of the partition matroid. A basis of the partition matroid is a set whose intersection with every bloc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Data
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946. The ordinal scale is distinguished from the nominal scale by having a ''ranking''. It also differs from the interval scale and ratio scale by not having category widths that represent equal increments of the underlying attribute. Examples of ordinal data A well-known example of ordinal data is the Likert scale. An example of a Likert scale is: Examples of ordinal data are often found in questionnaires: for example, the survey question "Is your general health poor, reasonable, good, or excellent?" may have those answers coded respectively as 1, 2, 3, and 4. Sometimes data on an interval scale or ratio scale are grouped onto an ordinal scale: for example, individuals whose income is known might be grouped into the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Scheduling
List scheduling is a greedy algorithm for Identical-machines scheduling. The input to this algorithm is a list of jobs that should be executed on a set of ''m'' machines. The list is ordered in a fixed order, which can be determined e.g. by the priority of executing the jobs, or by their order of arrival. The algorithm repeatedly executes the following steps until a valid schedule is obtained: * Take the first job in the list (the one with the highest priority). * Find a machine that is available for executing this job. ** If a machine is found, schedule this job on that machine. **Otherwise (no suitable machine is available), select the next job in the list. Example Suppose there are five jobs with processing-times , and ''m''=2 processors. Then, the resulting schedule is , , and the makespan is max(18,12)=18; if ''m''=3, then the resulting schedule is , , , and the makespan is max(11,13,6)=13. Performance guarantee The algorithm runs in time O(n), where ''n'' is the number of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mixed Integer Linear Programming
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine (linear) function defined on this polyhedron. A linear programming algorithm finds a point in the polytope where this function has the smallest (or largest) value if such a point exists. Linear programs are problems that can be expressed in canonical form as : \begin & \text && \ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strongly NP-hard
In computational complexity, strong NP-completeness is a property of computational problems that is a special case of NP-completeness. A general computational problem may have numerical parameters. For example, the input to the bin packing problem is a list of objects of specific sizes and a size for the bins that must contain the objects—these object sizes and bin size are numerical parameters. A problem is said to be strongly NP-complete (NP-complete in the strong sense), if it remains NP-complete even when all of its numerical parameters are bounded by a polynomial in the length of the input. A problem is said to be strongly NP-hard if a strongly NP-complete problem has a polynomial reduction to it; in combinatorial optimization, particularly, the phrase "strongly NP-hard" is reserved for problems that are not known to have a polynomial reduction to another strongly NP-complete problem. Normally numerical parameters to a problem are given in positional notation, so a prob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Identical-machines Scheduling
Identical-machines scheduling is an optimization problem in computer science and operations research. We are given ''n'' jobs ''J''1, ''J''2, ..., ''Jn'' of varying processing times, which need to be scheduled on ''m'' identical machines, such that a certain objective function is optimized, for example, the makespan is minimized. Identical machine scheduling is a special case of uniform machine scheduling, which is itself a special case of optimal job scheduling. In the general case, the processing time of each job may be different on different machines; in the case of identical machine scheduling, the processing time of each job is the same on each machine. Therefore, identical machine scheduling is equivalent to multiway number partitioning. A special case of identical machine scheduling is single-machine scheduling. In the standard three-field notation for optimal job scheduling problems, the identical-machines variant is denoted by P in the first field. For example, " P, , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


3-partition Problem
The 3-partition problem is a strongly NP-complete problem in computer science. The problem is to decide whether a given multiset of integers can be partitioned into triplets that all have the same sum. More precisely: * The input to the problem is a multiset ''S'' of ''n'' = 3 positive integers. The sum of all integers is . * The output is whether or not there exists a partition of ''S'' into ''m'' triplets ''S''1, ''S''2, …, ''S''''m'' such that the sum of the numbers in each one is equal to ''T''. The ''S''1, ''S''2, …, ''S''''m'' must form a partition of ''S'' in the sense that they are disjoint and they cover ''S''. The 3-partition problem remains strongly NP-complete under the restriction that every integer in ''S'' is strictly between ''T''/4 and ''T''/2. Example # The set S = \ can be partitioned into the four sets \, \, \ , \, each of which sums to ''T'' = 90. # The set S = \ can be partitioned into the two sets \, \ each of which sum to ''T'' = 15. # (every i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]